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ENCODING OF COMPLEX VALUED COMPOSITE FUNCTIONS
ONTO SPATIAL LIGHT MODULATORS IN REAL-TIME

Robert W. Cohn (PI)
ElectroOptics Research Institute & Nanotechnology Center
University of Louisville

ABSTRACT

Spatial light modulators (SLM) are used as real-time programmable diffractive optics for potential
applications to multi-object laser designation of moving objects. For real-time situations in which
prior knowledge is unavailable, fast on-line design algorithms are required. The time requirements
rule out many iterative design methods currently used for fixed pattern diffractive optics. Instead,
encoding methods that map desired complex values onto the available modulation values provide
the fastest realizations. As time permits, designs improved through limited iteration can be mapped
to the SLM. Such a system, built around pseudorandom encoding (PRE) and its extensions was
developed and experimentally demonstrated during the study.

The most significant extension to PRE is the development of a method of complex-valued encoding
that can be accomplished with as few as three discrete modulation values, and which can be
generalized to any modulator characteristic. The pairwise blending of PRE with three other encoding
algorithms (minimum distance encoding-MDE, modified minimum distance encoding-mMDE, error
diffusion-ED) provides one or two parameters that can be adjusted quickly to produce better
performance than either algorithm produces individually. The new design methods were
experimentally demonstrated together with demonstrations of real-time design and continuous
scanning of multiple spots on arbitrary and independent trajectories.

The ONR award is:

R. W. Cohn, A. A. Vasiliev, and H. Stark (Illinois Institute of Technology), “Encoding of Complex
Valued Composite Functions onto Spatial Light Modulators in Real-Time,” Office of Naval
Research, N00014-96-1-1296, $303,159. (1 September 1996 - 30 August 2000) Note: Vasiliev
relocated to Physical Optics prior to the start of the grant.

STATEMENT OF THE PROBLEM

The properties of current and anticipated spatial light modulators (SLM’s) limit the capabilities and
performance of DoD systems in that they do not produce all complex values of modulation. SLM’s
can be amplitude-only, phase-only, or amplitude can even be a function of phase. However, practical
devices providing independently controllable values of phase and amplitude, due to complexity and
cost, are not expected for some time. It has been possible to design modulation patterns for these
limited modulation range SLM’s that do produce diffraction patterns similar to those possible from
full complex SLM’s, but hours of intensive iterative optimization can be required. Instead, we have
studied methods of encoding that can be performed in real-time and partially optimized in near-real




time, that make it possible to use SLM’s in adaptive scenarios in which the lack of prior knowledge
prohibits off-line design.

Potential applications include multi-target laser designators, active vision systems and vision based

robotic navigation in which templates are projected and conformed onto objects to aid in recognition
and tracking, optical switching and interconnects, and laser marking systems. Additionally the beam
steering system has many potential biological and chemical sensing applications by attaching it to
a light microscope. When the Fourier plane of the SLM is imaged onto the specimen the diffraction
spots are at their tightest focus and can trap cell and particles. Multiple particles can be trapped,
steered and brought together. If the particles are coated with specific materials it becomes possible
to perform a series of tests, assays and even assemblies in a sequential fashion depending on the
outcome of each test. Also the particles can be moved vertically by adding a defocus term (a
spherical or quadratic phase profile to the spot modulation pattern.) The current limit to these and
other possible real-time applications, has been the lack of a system that transparently couples the
SLM and the diffractive design algorithms together in a real-time, multi-spot beam steering system.
This report documents the progress made on this study towards making multi-spot systems a reality.

SUMMARY OF THE MAIN RESULTS

The results in this report are largely built on extensions to the pseudorandom encoding (PRE)
method for phase-only SLM’s that we originally developed on AFRL/DARPA grant F19628-92-K-
0021 (DTIC report order number: ADA315727.) For this reason the section Background reviews
encoding in general, PRE, and additional necessary concepts from diffractive optics design. Then
the key results of the study are summarized together with web links to the corresponding journal
papers and Quicktime movies. Hard copies of these papers are included in the Appendix of the non-
electronic version.  Additional results follow and are summarized similarly. Finally
recommendations for future studies as suggested by this study are presented.

BACKGROUND

PRE is a statistically-based method of approximating fully complex modulation on SLM’s that
produce only a limited range of complex values (e.g. real valued, continuous phase-only over a full
2T, phase-only less than 27, discrete valued phase, amplitude-phase coupled). Most encoding
methods perform a single function operation per SLM pixel which leads to a numerically efficient
computation that can even be performed in serial at SLM frame rates. PRE is notable in that it
produces a good approximation to the desired function that one would obtain with a fully complex
modulator, plus a faint white noise background. The noise level is directly related to the mean
squared error between the desired complex modulation and the actual modulation produced by
encoding. The noise background extends over the full usable diffraction plane (i.e. the non-
redundant bandwidth-NRB which corresponds to the reciprocal of the pixel pitch.) There are no
pronounced noise peaks or sidelobes as compared with prior methods.




The earliest computer generated holograms represented complex numbers by grouping pixels
together, which results in regions of significant noise and which reduces the useful area of the
diffraction plane. The method of minimum distance encoding (MDE) that was pioneered by Juday
(which is often referred to as MEDOF-minimum euclidean distance optimal filter) minimizes the
sum of the squared errors between the desired fully complex modulation and the actual modulation
error. However, minimum distance etrors in the modulation plane result in pronounced harmonic
errors (large noise sidelobes) and reduced fidelity (e.g. increased deviations from a desired equal
intensity spot array) in the diffraction plane. While the average noise background from MDE is
lower than PRE, the intensity of the brightest noise sidelobe is usually greater than that found for
PRE. These attributes of PRE often prove advantageous when overall fidelity across the entire NRB
and speed of computation are key requirements.

The importance of complex valued encoding can be understood by considering how multi-spot
beamsteering would be performed with a fully complex function and then by further considering how
the performance is affected by using limited modulation range SLM’s. Typically the SLM is used
in a Fourier transform arrangement in which the SLM is illuminated by a collimated laser beam. The
complex amplitude of the Fraunhofer diffraction pattern is the Fourier transform of the complex-
valued modulation from the SLM. The Fourier transform is a linear operator. Therefore, when
individual modulation plane functions are added together to form a composite modulation function,
the resulting diffraction pattern is also found to be a linear combination of the Fourier transforms of
the individual modulation plane functions. The fully complex SLM then provides a direct design
procedure for synthesizing desired diffraction patterns. One needs only use known Fourier transform
pairs and linear superposition to design any desired array of spots. This is a significant simplification
over analytically performing the Fourier transform or numerically performing the fast Fourier
transform (FFT).

However, if the SLM is not fully complex, mapping from the desired complex function to the actual
SLM modulation values is a nonlinear operation, which is prone to producing undesirable
interactions between the individual functions (specifically intermodulation distortion including sum
and difference frequency generation.) In MDE, which uses hard decision boundaries to map from
the fully complex to the SLM values and which is akin to hard limiting, the noise sidelobes are quite
apparent at the sum and difference frequencies. In PRE the harmonics are not emphasized because
the mapping is random rather than systematic. The SLM value is selected randomly in proportion
to the closeness of the desired complex value to various possible SLM values. This soft decision
method does not eliminate the noise harmonics, but tends to diffuse the sidelobes over the entire
diffraction plane. On average, the expected value of the diffraction pattern is identically the desired
diffraction pattern plus a white noise background that corresponds to the average error between the
actual and the desired modulation.

An additional important issue in designing diffraction patterns is that of design freedoms. There is
not one, but there are many possible modulation functions that produce identical intensity
distributions in the diffraction plane. For example, consider an array of identical intensity spots in
the diffraction plane. Each spot has an arbitrary value of phase. Thus, there are a near infinite
number of possible complex amplitudes that produce the same intensity distribution. The values of
these phase free parameters do profoundly affect the performance, even if the modulator is fully




complex. Specifically, the diffraction efficiency can vary from 1/N where N is the number of spots
for all phases identical, to 70% or higher for an optimal selection of the phases. In the full complex
SLM the only major concern is the loss of energy, which is absorbed by the SLM.

However, for a limited modulation range SLM, error between the desired function and the encoded
function also produces a noise background and nonuniformity errors in the resulting diffraction
pattern. (And for a phase-only SLM none of the error signal is absorbed and all the error signal
reaches the diffraction pattern.) For the limited-range SLM, optimization in terms of the free
parameters can also be carried out. In these designs diffraction efficiencies of 90% to nearly 100%
have been produced (for phase only modulators.) The designs usually include an allowance for a few
percent intensity nonuniformity of the spot array. The high efficiency helps to reduce the
background noise.

While the performance of these optimized designs is exceptional (as routinely demonstrated by the
manufacturers of fixed pattern diffractive optics), the computational load can be impractical for a
multi-spot beam steering system that is designing and projecting a sequence of diffraction patterns
in real-time. These computational issues led to the hierarchical design approach in [1] (specifically,
Fig. 1) in which successively more numerically intensive design methods are employed depending
on the available computational time, which in the real-world is situation dependent and varies from
moment to moment. Review articles [19,20] cover the background in this section in greater depth.

KEY RESULTS FROM THE STUDY:

Result 1: PRE for Ternary, discrete and arbitrary SLM’s. The method of PRE which had
previously been applied only to SLM’s that are phase-only or phase-only plus an added zero
amplitude states, was extended to a completely general form in [10]. The method requires that the
SLM produce at least three complex values. The probability of selecting each of the three values is
determined by solving a third order linear equation. The range encoded by PRE is contained within
the triangular region formed by connecting the three values. For discrete SLM’s having more than
three values, multiple triangular regions can be defined in order to enlarge the encodable range or
to more finely subdivide the complex plane. The imposition of smaller triangular regions leads to
reduced encoding errors and hence higher fidelity diffraction patterns.

The practical benefit of the three level encoding method is that one could develop prototype optical
processors with three value SLM’s. The simplified requirements on addressing would greatly
accelerate development and reduce cost of the SLM. The value of developing an SLM with a greater
number of modulation values could then be estimated based on the resulting reduction in encoding
error. Application of the new PRE method to continuous-valued SLM’s is then based on a practical
assessment of the number of modulation values that need to be addressed.

Result 2: Blended PRE algorithms. The concept of combining multiple encoding algorithms
together was explored and extended. While PRE has a limited encoding range, MDE (and also error
diffusion — ED, which is discussed in Result 8) encode any value on the complex plane. The so-
called blended algorithms use MDE (or ED) to encode those values that cannot be encoded by PRE.




The values encoded by either PRE or MDE can be changed by simply scaling the desired complex
values in amplitude and/or phase. This provides two free parameters that can be used to fine tune
the fidelity of the diffraction pattern. This tuning usually results in a blended algorithm that produces
a diffraction pattern of higher fidelity than either algorithm produces individually. For background
noise, it is found that increased encoding by MDE reduces the random noise of PRE but increases
the harmonic noise of MDE. There is usually a clearly evident degree of blending for which the
combined noise level from the two types of encoding is minimized. Similarly there is a blending that
produces a minimum uniformity fluctuation from the desired diffraction pattern due to reduced
contributions of the random fluctuations from PRE and intermodulation distortion from MDE.
Typical plots of the performance changes as a function of the degree of blending are shown in Fig.
8 of [5]. Atpresent there is no numerically efficient procedure or approximate method for selecting
the blending free parameters optimally. Multiple simulations, each involving a Fourier transform,
is currently required. However, it would be fairly easy to perform the adjustment using a video
camera to feed back the far-field intensity patterns.

The most interesting and novel result of this paper was the proposal and development of a modified
MDE-PRE (MD-PRE) blended algorithm, that we refer to as modified MD-PRE (mMD-PRE). The
MDE prescription is to map the desired complex value to the closest value produced by the SLM.
The mMDE prescription is to map the desired value to the closest value produced by PRE and then
use PRE to encode the mapped value. (See Fig. 1in[5].) These two distinct possibilities were not
originally apparent to us until we began considering discrete value SLM’s. The reason the
distinction was not apparent is that in our original studies the minimum distance mapping happens
to coincide with the modified minimum distance mapping for continuous phase-only SLM’s.
Simulated diffraction patterns (Fig. 9 from [5]) for a three phase, phase-only SLM provides the
clearest demonstration and comparison of MDE, PRE, MD-PRE and mMD-PRE. The mMD-PRE
demonstrates the highest fidelity of the four encoding methods, and is clearly seen to reduce
harmonics over the MD-PRE method.

A special case of mMD-PRE for real-valued ternary SLM’s is considered in [8]. Similar
observations on the performance improvements of mMD-PRE and MD-PRE over MDE and PRE
individually are made. The real-valued modulation necessarily produces diffraction patterns that are
symmetric around the optical axis. Typically the symmetry implies a reduction in the useable non-
redundant bandwidth. However, in some applications (e.g. for specific optical network topologies)
symmetric diffraction patterns may be desirable.

Result 3: Optimized selection of the fully complex function for encoding. As reviewed in
Background on the phase free parameters, there are many fully complex functions that produce
identical intensity distributions. For PRE onto a phase-only SLM, it is desirable to select the fully-
complex function that has the highest diffraction efficiency (v)). Since 1 can be directly calculated
from the complex valued modulation (specifically, 1 is the average intensity modulation across the
SLM aperture) optimization of 1) can be performed without iterative use of the FFT, which is likely
to provide numerical advantages over other design methods that iteratively transform between the
modulation plane and the diffraction plane. Three methods of optimization (Monte Carlo, genetic
algorithm, and gradient descent) were applied to the problem of identifying a fully complex function
that has the highest diffraction efficiency. The results of the study for a 10 spot pattern are




summarized in Table 2 of [4]. The gradient method achieved the highest efficiency (1] = 69.3%)
with the least computational effort, while the genetic algorithm (1) = 64.7%) achieved the most
uniform diffraction pattern.

To put these results in perspective, Table 2 also reports the performance for setting the amplitude
of each modulation value to unity. This corresponds to the classical kinoform and also to MDE for
a phase-only SLM. This phase-only transformation is known to produce the highest diffraction
efficiency. The efficiency of the kinoform for the modulation designed by the genetic algorithm
actually achieves the theoretical maximum possible efficiency (1] = 98%) over the complete space
of the phase free parameters (as reported in Krackhardt et al., Appl. Opt. 31, 27-37, 1992.) The
efficiency is within 1.5% of the theoretical limit for the kinoform design based on the gradient
algorithm. Even for the 1000 iteration Monte Carlo optimization of the fully complex function (M
= 47.7%) the kinoform efficiency is within 3.8% of the maximum possible efficiency. The wide
variation in 7} for the fully complex function reduces to a much smaller variation in 1) for kinoforms.

This result has some implications for selection of fully complex functions for blended algorithms,
such as MD-PRE, in a real-time system. A question raised is whether more computational effort
should be devoted to optimizing the efficiency of the fully complex function or to searching for the
optimal degree of blending. This problem could be further investigated by developing a table similar
to Table 2 for the case of MD-PRE. Table 1 in [4] reports the optimum values of phase for each
optimization method, and would permit this question to be investigated directly. (So far, in most of
our journal papers on blended encoding [2,5,8], we only have used the free parameters of phase
derived from Krackhardt et al. that produce near the theoretical maximum efficiency for the
kinoform.) A study using various fully complex input efficiencies would be an important step
towards developing a numerically efficient algorithm for simultaneously optimizing the phase and
the blending free parameters.

Result 4: Experimental demonstrations of beamsteering with phase-only SLM’s. Experimental
demonstrations were performed with a Hughes liquid crystal light valve (LCLV) and a Boulder
Nonlinear Systems (BNS), 128x128 pixel electrically-addressed SLM filled with parallel-aligned
nematic liquid crystal. Both SLM’s produce essentially continuous phase modulation over a 27
range. The BNS SLM behaves more like an array of independently addressed phase-only elements
than does the LCLV (which suffers from its limited resolution. This topic is discussed further in
Result 9.) For the BNS SLM, the most significant difference between the device an ideal SLM is
the presence of a bright on-axis spot which is due to Fresnel reflections from the cover glass and
which is further enhanced by the low reflectance of the modulating layer. Experimental results are
reported in several of the papers, and in all cases the experimental results compare quite reasonably
well with the simulated results. In Tables 1,2 and Fig. 13 of [5] theory and experiment are compared
for blended encoding for continuous, three-phase and four-phase phase-only SLM’s. The greatest
discrepancy seems to be that the measured level of non-uniformity (especially in Fig. 13) seems to
be offset to a somewhat higher level than for theory. Nonetheless, the same trends are found for
nonuniformity as a function of the degree of blending. Also this SLM was applied to simulate the
effect of blurring observed in the LCLV (through digital predistortion of the addressing signal) in
[3] (as described in Result 9.)




The SLM was used extensively to demonstrate real-time multi-spot beam steering in [1]. The
general concepts of arbitrary beam steering are illustrated by the Quicktime movies associated with
Fig. 2a and Fig. 3ain [1]. MD-PRE is compared with MDE in Fig. 3a and Fig. 3b. The distinct,
harmonically-related sidelobes of MDE should be more easy to falsely identify as a target than the
more uniform, matte-finish noise background of MD-PRE. Fig. 4 shows continuous translation of
a fixed pattern (a 7x7 spot array).

Fig. 5a shows that continuous, gap-free scanning, similar to a galvanometric scanner is possible with
several spots simultaneously. Fig. 5b illustrates the problems of using an FFT-based design
algorithm-which is that the spots are located at discrete locations, as compared to the continuous
locations possible using a Fourier transform table lookup approach as was used for Fig. Sa. Fig. 8b
in [1] illustrates that nonuniformity can be reduced (when time permits) by averaging together
sequential realizations (Fig. 8a) of the same diffraction pattern. Fig. 9 in [1] demonstrates that the
SLM can be used to provide broad-area laser illumination of objects (in this case a coin.) A broadly
spread pattern is produced by randomly selecting phases for the SLM pixels from a uniform
distribution over a 27 range. The resulting speckle pattern is reduced to acceptable levels in Fig.
9b by averaging together successive realizations. Fig. 7a illustrates independent shaping of several
beams in parallel by using aperture subdivision together with PRE to apodize the sub-apertures of
the SLM subdivision. Fig. 7b generalizes the previous example by adding a second layer of
modulation functions to the previous modulation function, resulting in three more spots. This
example suggests a controller that assigns an area on the SLM each time a new spot is needed. The
controller assigns space based on trying to optimize overall performance.

Fig. 6a demonstrates a numerically efficient and diffraction efficient way to scan many spots in
parallel. In this movie one cluster of 16 spots corresponds to 16 interleaved functions (each a linear
phase ramp). The undersampling of each function (each function is sampled once in a 4x4 array of
SLM pixels) results in a 4x4 replication of the 16-spot, spot array. The entire pattern has a
theoretical diffraction efficiency of 100%. The replications can be turned off by random (rather than
periodic) multiplexing of the 16 switching functions as shown in Fig. 6b. The random multiplexing
method was proposed by (Davis and Cottrell, Opt. Lett. 19, 496-498, 1994). These experiments
demonstrate and suggest an extremely wide range of functions for beam steering and laser
illumination that are possible using a SLM together with an intelligent on-line design system.

Result 5: System specification of an on-line diffractive design system for multi-spot beemsteering.
In order to provide the fastest throughput of multi-spot designs we proposed the hierarchical design
method described in Fig. 1a in [1]. Successively more numerically intensive design methods are
employed depending on the available computational time. The first level design method is to specify
and compose a fully complex function and then encode it by a selected method e.g. MD-PRE. A few
free parameters (e.g. scaling of the fully complex function) can be used to improve on the initial
encoding in the second level of the design. The third level is to use the free parameters associated
with the spot phases to improve diffraction efficiency. Along with the free parameters of phase, spot
intensities can be adjusted iteratively over a small range to compensate for the resulting deviations
from the desired intensity levels. For this system, the third level of the hierarchy is only executed
as time permits. If even more time is available, then the direct optimization methods for fixed
pattern diffractive optics (e.g. the iterative Fourier transform in Fig. 1b) can even be employed. As




shown by the results in Sec. 4, good patterns often can be produced by using only the second, or even
the first level.

In summary, the key result of [1] is the design of an on-line modulation pattern design system that
together with the phase-only SLM demonstrates adaptive beam steering of arrays of individually and
continuously steerable laser spots.

ADDITIONAL RESULTS FROM THE STUDY:

Result 6: PRE for amplitude-phase coupled SLM’s. Even SLM’s that are claimed to be phase-only,
usually exhibit amplitude variations as a function of phase. Furthermore the use of polarizers
together with twisted or parallel-aligned liquid crystal SLM’s can result in spiral and off-center
circular modulation curves on the complex plane. The development of PRE methods for coupled
SLM’s was first addressed in [11]. The paper presents several algorithmic approaches and identifies
various limitations related to realizability of desired values, numerical efficiency, and encoding
errors. It is shown that various PRE encoding methods can realize the same complex value, but with
differing levels of encoding error. Also it is shown that many encoding algorithms reduce the
encoding range to less than the maximum possible range for PRE. The range appears to be
maximized using amethod of binary selection between two possible values on the modulation curve.
(Also see Result 7.)

Result 7: Systematic evaluation of the full encoding range that can be encoded by PRE. This
paper [9] specifically focuses on and builds on the recognition from [11] that the binary encoding
method provides a way to determine the encoding range of PRE. Binary encoding is shown to
encode any value on the line segment that connects two modulation values by simply adjusting the
probability of randomly selecting each value. Line segments can be iteratively drawn between all
pairs of modulation values to map out the fully PRE encoding range. This evaluation produces a
convex set of values. Within the convex region one can identify the fully complex encoding range
as the largest range that can be enclosed by a circle around the origin of the complex plane. Finally
the possibility of ternary PRE is mentioned. Further consideration of this possibility led to ternary
encoding as described in Result 1.

Result 8: Blended encoding of PRE with error diffusion. Error diffusion (ED) adds a nonlinear
filtering operation to the MDE algorithm. The method maps a desired complex value to the closest
available modulation value of the SLM. The error between the desired and actual value is then
weighted (by a linear filtering coefficient) and added onto the next complex value to be encoded.
The error adjusted complex value is again encoded by MDE and the next value of error is calculated.
The performance of ED has been impressive. However the method, due to the inherent filtering in
the algorithm, does tend to produced pronounced noise outside the window of the desired diffraction
pattern (but still within the non-redundant bandwidth of the diffraction pattern.) Blending of ED
with PRE (ED-PRE) was demonstrated in [2], specifically for continuous phase-only modulation
characteristics. As with ED, there is a filtered value that is encoded. Values outside the unit circle
are encoded by ED. Values inside the unit circle are encoded by PRE. In addition to amplitude
scaling of the entire complex function (as in MD-PRE) a new free parameter is included that scales
the amount of the error that is diffused forward when PRE is selected. This new factor accounts for
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for the fact that PRE already distributes error into a white background of noise, thus propagating
forward all the error would actually introduce more encoding error than is necessary. Searching over
the two free parameters led to diffraction patterns that had higher fidelity than either method
produces individually. ED-PRE tended to replace harmonic noise peaks with speckle patterns that
had lower levels of peak noise. The noise pattern was not white, but instead produced a reduced
noise region around the desired diffraction pattern. Overall, the fidelity of ED-PRE can sometimes
be somewhat better than for MD-PRE. The small performance improvement may not justify the
search over the extra parameter. However, [2] does show that there are ways that ED (which is
widely used in diffractive optic design and printer halftoning) might be improved through blending.

Result 9: Nonlinear distortion of diffraction patterns due to blurring of the phase modulation.
The effects from the limited resolution of current liquid crystal light valves (LCLV’s) appears to be
much more severe when these SLM’s are used in a phase-only mode for producing Fraunhofer
diffraction patterns, than when they are used as intensity modulators for image display and projection
[3]. A typical resolution specification for commercial LCLV’s is 40 Ip/mm for low intensity write
signals and 4 Ip/mm for high level write signals. When we measured the resolution of the phase
modulation directly (rather than the resolution on an intensity image) we found that this resolution
is unchanged. The problem is that increasing depth of modulation, leads to increasing nonlinear
distortion, and a large depth of modulation (up to 27) is required for diffraction-efficient beam
steering. The nonlinearity becomes evident when one convolves the point spread function (PSF) of
the phase modulation with a desired signal. This blurring PSF (which we measured to have a
FWHM of ~60 pm FWHM for a Hughes LCLV) when convolved with the ideal write signal and
Fourier transformed reproduced all the harmonic features observed in the measured diffraction
pattern. Further simulations of the performance of a 128x128 pixel PRE design showed that the
width of PSF needs to be 5% of the pixel spacing to maintain levels of uniformity and harmonics
reasonably close to the levels anticipated without phase blurring. While predistortion of the write
signal can be envisioned to compensate for the blurring, we found that predistortion requires that the
SLM have an increased phase range (often many times greater than 27) to produce the correction.

The best solution to the problem appears to be minimizing the phase blurring in LCLV’s in the first
place. The blurring is probably due to electrical field fringing between the parallel plate electrodes
of the SLM. Blurring was not observed in the BNS SLM, for which each pixel is electrically
shielded from each other. Therefore, for LCLV’s a reasonably practical solution would be to
fabricate a pixelated device in which each pixel is electrically isolated from all others. We anticipate
that pixels as small or smaller than 3 | could be fabricated. The fabrication requirements would be
much less involved than making an electrically-addressed SLM. Imaging and reduction imaging
systems for imaging the write signal with resolutions of 3 km would not be technically challenging
to develop. The pixelated LCLV would have the advantages of being able to handle very intense
laser illumination, much larger pixel counts and much wider diffraction angles than current
electrically-addressed SLM’s. The manufacturing costs and time could be much less than for
electrically-addressed SLM’s. These features would also make the LCLV attractive for optical
interconnects and optical backplanes.

Result 10: Reduction of coherent interference on laser diffraction patterns. We developed a
measurement procedure that uses a frequency-swept laser diode to reduce unwanted interference
fringes noise in diffraction pattern measurements due to multiple reflections in [12]. While CCD

11




cameras can be purchased without cover glass over the imager, often cooled CCD cameras cannot.
Reflections between the imager and the cover glass produce interference fringes, that make it
difficult to accurately measure the diffraction pattern. One way to reduce this effect is to use a
temporally incoherent source of light. However, with the recent availability of tunable laser diodes
one can instead sweep the laser diode and time integrate the diffraction pattern, which averages out
the interference fringes. We measured the pattern from a glass diffractive optic by this method. The
resulting 8x8 spot array had a theoretical nonuniformity of 7% rms and the measured uniformity was
7.9% with the laser swept over a 0.25 nm range. Without sweeping the uniformity was measured
as 12.1%. Current tunable laser diode systems can sweep adequately fast to permit cancellation of
coherent interference at video frame rate.

Result 11: Applications of encoding to other device technologies. PRE and its derivatives can be
applied to device technologies other than SLM’s. PRE could be used in a variety of phased array
systems. For instance, acoustic direction finding arrays consist of many individual acoustic sensors
whose directionality is steered by phasing of the sensors. Using PRE with a three phase, phase
shifter would effectively permit continuous, multi-directional scanning of directivity. The ternary
phase shifter would likely have cost and size advantages over a continuous shifter.

A second application would be the rapid design and fabrication of fixed-pattern diffractive optics
in [13]. Fabrication speed results from using laser speckle to photolithographically expose custom
texture patterns on each pixel of a diffractive optic. This type of lithography can be much faster than
direct-write with a focused electron or laser beam. The roughness pattern across a pixel can be
viewed as a repeated random trials or spatially multiplexed realizations of the particular PRE design.
Repeated trails provide more averaging than a single trial per pixel (as is in PRE on SLM’s), which
. results in improved performance. While the error signal is identical, it is diffracted over a greater
spatial extent than for a single random trial, resulting in a lower average noise level. Most of the
research reported in this paper was completed prior to the current grant.

A third application conceived on this study was the idea of using PRE in a Bragg grating on top of
a waveguide (or similarly, in a multi-thin film dielectric stack.) By modulating the position of Bragg
grating stripes from their normal periodic locations, it becomes possible to design multi-passband
reflection filters. Fabrication approaches that could lead to rapid prototyping of custom filters is also
described in [7]. Fabrication development of the device is the subject of current grants.

RECOMMENDATIONS FOR FUTURE STUDIES:

Recommendation 1. Per Result 5, develop a portable prototype multi-spot beamsteering system for
demonstration to interested military, biomedical and commercial parties. Some work has been begun
on a Phase I STTR grant with Boulder Nonlinear Systems, Inc.

Recommendation 2. Per Result 5, demonstrate an adaptive multi-object tracking and laser
designation system in which video tracking software provides a set of coordinates to the on-line
modulation design system and the resulting modulation positions laser spots on the moving objects.
A skeleton system has been begun on the Phase I STTR grant. L. G. Hassebrook of U. of Kentucky
has been leading the multi-object tracking software development activity.
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Recommendation 3. Continue experimental demonstrations with new or improved SLM’s as they
become available including the development of encoding algorithms specific to the modulation
characteristics of the device.

Recommendation 4. Per Result 9, develop an optically-addressed SLM’s or light valve that through
use of a non-addressed, pixelated SLM, is immune to phase-blurring down a resolution set by the
pixel size of the SLM and the resolution of the image projected on the write side of the light valve.

Recommendation 5. Fabricate and experimentally demonstrate waveguide grating devices designed
using PRE per Result 11. This work is ongoing in current and pending grants.
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Enumeration of illumination and scanning
modes from real-time spatial light modulators

Li Ge, Markus Duelli and Robert W, Cohn
ElectroOptics Research Institute, University of Louisville
Louisville, KY 40292 USA
rweohn@louisville.edu

Abstract: Using a phase-only spatial light modulator (SLM) in a Fourier
transform setup together with fast diffractive optics design algorithms provides
a way to automatically generate complex and rapidly changing laser
illumination patterns in the far-field. We propose a hierarchical sofiware
structure for the adaptive, on-line design of far-field illumination patterns.
Using the on-line design system together with camera feedback of the
illuminated scene would make it possible to detect and actively laser designate
multiple objects in parallel. Possibilities for multispot, arbitrary trajectory
scanning and also broad-area speckle-reduced illumination are demonstrated
with experimentally measured diffraction pattern sequences from a 120 x 128
pixel phase-only SLM.

© 2000 Optical Society of America
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1. Introduction

Spatial light modulators (SLM) can be used both as image displays and as programmable real-
time diffractive optical elements (DOE). The second application is the area addressed by this
paper. Programmable diffraction has a decided advantage over image display when the image
consists of only a few bright pixels. Consider that when an SLM of N pixels is imaged, only ~1/N
of the energy in the SLM aperture is found in one pixel of the image. However, when laser light
is diffracted, as much as 100% of the light in the aperture (ignoring practical sources of loss; e.g.,
sampling effects and absorption) can be diffracted into a single pixel (specifically, a diffraction-
limited spot.) Also, specially designed and optimized DOE’s have been demonstrated that diffract
the incident energy into 10-1000 equal intensity spots with efficiencies of 90 % to 100 % [1]. For
SLM’s that contain from 128 to 5122 pixels it can be seen that for patterns of 1000 spots the SLM
pattern can be ~16X to 250X brighter when used as a programmable DOE than when used as an
image display.

This result suggests roles for diffractive SLM’s in multi-spot scanning and scene illumination
that are more general than traditional single-spot mechanical (and also acousto-optic) scanners.
Unlike traditional scanners, frame-addressed SLM’s are non-inertial and have no memory (as long
as the modulating material response time is shorter than the SLM framing time.) Since frame-
addressed SLM’s can produce sequences of unrelated images, the sequences can be designed that
scan multiple spots on arbitrary trajectories and with different velocities and intensities. Because
these possibilities are unlike those for previous scanning systems, the goal of this paper is to
describe the physical differences between traditional, inertial type scanners and diffractive SLM
based illuminators (Section 2), to present the software programming and computational
considerations for on line design of the required SLM modulation patterns (Section 3), and to
experimentally demonstrate, using a phase-only SLM, some of the generalized scanning and
illumination functions that are possible using diffractive, frame-addressed SLM’s (Section 4).

While the diffraction patterns that we will present are generated at real-time rates, the SLM
modulation patterns usually were designed and optimized off-line. A continuing goal in our
research is to develop an attached computer/hardware/software system that automatically designs
the modulation patterns at real-time rates [2]. We recognize that any practical system developed
will require a tradeoff between optical performance and computational load. This leads to us
proposing in Section 3 a three-level, hierarchical design strategy that trades off optical
performance versus available computation time. We believe that for many applications it will be
reasonable to design patterns automatically at real-time rates and with sufficient optical quality
to permit laser designation of multiple moving objects. Herein we describe a proposed multi-spot
scanning system in enough detail to permit evaluation of the new functionality provided together
with a description of system design considerations and fundamental limitations.

2. Distinctions between inertial scanners and frame-addressed SLM’s for scanning

Inertial scanners include galvanometers and acousto-optic Bragg deflectors. These devices have
the ability both to point or to continuously scan a laser beam. Even when producing spots at non-
sequential locations the beam usually is scanned continuously, which may require the laser to be
shuttered if the line between two points is not to be illuminated. Ideally frame-addressed SLM’s
produce sequential images and shuttering of the laser source is not required. However, stray light
can be generated during the transition time between successive SLM frames due to the finite
response time of the modulating material. When the SLM framing time is close to the material
response time, the energy in stray light can be comparable to the energy in the desired pattern.
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Thus at limting frame rates, shuttering of the laser may be necessary.

While inertial scanners can produce continuous line scan automatically, frame-addressed
SLM’s cannot. Furthermore the time required to scan a line over the full angular range of the
device is of the same order as the time to repoint the laser to an arbitrary position. To approximate
a continuous scan line with SLM’s the diffraction patterns must sample space without leaving any
gaps. This problem corresponds to successively sampling the diffraction plane » times with a
diffraction limited spot, where » is the number of pixels in a # x n pixel SLM. If the frame rate
of the SLM is identical to the frequency of the inertial scanner then the inertial scanner is 7 times
faster than the SLM.

However, this is a worst case comparison which does not take into account the additional
capabilities of SLM’s to produce multiple spots in parallel and to produce illumination patterns
with footprints that are larger than the diffraction limit. The difference in scan speeds between
inertial and SLM scanning can be reduced to #/m, by using the SLM to scan m, diffraction limited
spots along the scan direction, or by broadening/blurring a spot by a factor of m, which leads to
a speed comparison of n/m,. Also varying combinations of scanning and blurring can be used to
obtain a speed comparison of n/(m,m,). (Note: This speed comparison is not meant to reflect that
both blurring and multiple spots increase scanning more than either does individually. Instead the
speed comparison suggests that various combinations of blurring and multiple spots can be used
to scan continuously with a SLM.)

Examples of these possibilities either have been presented previously or are presented herein.
In Section 4 we present an example of scanning an array of multiple spots. One way to obtain
blurring of the spots is to partition the SLM into sub-arrays in which the aperture of each sub-
array sets the diffraction limited spot size. Another way is to design an effective apodization into
the modulation pattern that blurs or broadens the spots.

We complete this comparison by considering the speeds of various devices. Commercial
galvanometric scanners scan at rates up to their resonant frequency ~5 kHz and take small steps
at ~0.2 ms [3,4]. Acousto-optic Bragg deflectors can scan in excess of 1 MHz [5,6]. The speeds
of the galvanometers are comparable to the frame rate of current liquid crystal on silicon SLM’s
(10 kHz for the BNS 128 x 128 pixel SLM) [7]. However, for analog phase modulation over a
full 27 range nematic liquid crystal is used. Its response time is ~2 to 4 mS which would limit
useful frame rates to ~250 Hz. Even at this low rate a single diffraction-limited spot (and also
multiple spots) could be continuously scanned over the 128 resolution cells 2 times per second.
A faster phase shifting device that is not commercially available at this time is the flexure beam
deformable mirror device. Response times of under 10 iS have been reported [8]. Given fast
enough frame addressing circuits then ~800 scans per second per spot or faster is possible. Using
the frame rate of the BNS addressing circuit as a reasonably practical number gives ~80 scans per
second. The SLM used for the experiments in this study is the BNS SLM described above. It is
filled with nematic liquid crystal and thus is limited to practical frame rates of around 250 Hz and
2 complete line scans per spot per second.

In order to clarify the differences between frame-addressed SLM’s and traditional scanners
we have compared their speeds at continuous scanning of the full field of regard. By this
comparison SLM’s appear to be quite slow. However, the applications we envision for the SLM
(while they may require an occasional full field scan) do not require repetitive full field scanning
for which traditional scanners are best suited. Specifically, we envision using an SLM illuminator
together with feedback from a video camera viewing the illuminated scene to adaptively track and
designate objects of interest in the scene. The ability to configure patterns flexibly provides a way
to intelligently interrogate the field of regard. Using information gained from previous video
frames on object motion provides a way to reduce the total area of the scene that needs to be
illuminated. Used in this way it appears likely that even the 250 Hz frame rate SLM reported in
this study has adequate frame rate to support adaptive tracking and designation of multiple objects
in situations where the motion of the objects is neither too fast nor too erratic to be predicted.
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3. Hierarchical DOE design system

In addition to the physical limitations that set SLM frame rate there is also a computational
limitation. For the adaptive type applications that we are considering, it usually will not be
possible to predetermine an appropriate set of desired diffraction patterns. Therefore it will be
necessary to design the required spatial modulations for the SLM on-line as needed.

Current methods of designing fixed pattern DOE’s usually use global search and optimization
to identify modulation patterns that produce the best possible diffraction patterns. These methods
are computationally intensive. The reason is that there are a near infinite number of Fourier
transform pairs that have identical intensity diffraction patterns but which have different phase
diffraction patterns. In illuminator systems, in which only the intensity of the desired diffraction
pattern is of interest, global search and optimization are used to identify the phase diffraction
pattern that gives the best performing intensity diffraction pattern. If the SLM can produce any
arbitrary complex value of modulation then all diffraction patterns are identical except for an
intensity scale factor. The optimization algorithm searches for the modulation pattern that
maximizes the intensity (and hence, the diffraction efficiency) of the diffraction pattern. However,
most modulators are not fully complex, and thus the diffraction pattern may only approximate the
desired diffraction pattern. Then the optimization algorithm needs to trade off diffraction
efficiency with accuracy or “fidelity” of the intensity pattern.

Because optimization methods are computationally intensive, it may not be possible to
complete the calculation at the frame rate required for a real-time illumination system. Faster, but
lower performing, algorithms can be used to reduce computation time. Then, if additional time
becomes available (e.g. there is little change in a scene for a period of time) design algorithms that
produce higher performance are used. This introduces the hierarchical design strategy needed for
on-line design. Fig. 1 summarizes one approach to on-line design that has three levels of
computational complexity.

Level 1: Minimum Time Design. The design method starts with a specification of I;(f) the
desired target intensity pattern in the diffraction plane. For a target diffraction pattern composed
of an array of spots we may specify the desired () for the discrete set of frequencies f;. These
values together with any arbitrary set of phases ¢, specify the complex light distribution A(f)
The complex valued function a,’(x) where x is the modulator plane coordinate can then be
calculated (the compose function block in Fig. 1a.) Composition can be performed using the
inverse fast Fourier transform (IFFT) of A,'(f). However from the standpoint of ease of use or
numerical efficiency it may be preferred to use known Fourier transform pairs g (x)~G ( f) and
exp(j 2T fix)~O(f;) followed by the superposition of these elementary functions to give

al(x) = gl: g,(x) exp[j(an; x+ d)i)]. @

The magnitude of function a.'(x) is then rescaled so that the maximum magnitude is unity
(normalization step in Fig. 1a with Y initially equal to unity) which produces the normalized
function a(x). The normalized function a (x) is mapped through a selected encoding algorithm
into a modulation a(x) that is achievable with the limited modulation range of the non-fully
complex SLM. The diffraction pattern intensity I(f) is produced by the optical Fourier transform
(OFT).

The normalization step in Fig. 1a is suggested by the fact that SLM’s are passive devices.
However, the actual reason for this step is that while some algorithms can be applied if
magnitudes are greater than unity, many encoding algorithms cannot [2]. Furthermore, of the
encoding algorithms that can handle magnitudes that are greater than unity, many of these
algorithms nonetheless depend on the exact scaling of the function. (Scaling is discussed further
in the next subsection on Level 2 design).
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Fig. 1. (a) The proposed hierarchical design system, (b) the iterative Fourier transform algorithm. In (a) Level
1 design is indicated by black lines and boxes. With the addition of the algorithmic portions indicated by red
and blue lines, the algorithm becomes a Level 2 or Level 3 design respectively. The errors between the target and
resulting intensities (dashed blue line) can be used to compensate the desired function, and this procedure, which
is similar to adjustment of the free phases, also is classified as Level 3 design.

The major computational time for the Level 1design includes composing the function a,'(x)
(which requires when using superposition either O(NM) function calculations for an N pixel SLM
and M frequencies of interest f, or when using IFFT O[Nlog,(N)] multiplies,) and encoding
[which requires O(N) function calculations.] For a small enough number of diffraction spots [i.e.
for M<alog,(N) where @ is a scale factor accounting for the exact differences in computation time
between the IFFT and superposition algorithms, ] superposition of Fourier transform pairs requires
less computation time. While composition of the desired function requires O(M) times more
calculations than encoding, the elemental functions can be synthesized in parallel which, at the
cost of added (analog or digital) processing hardware, would permit the rate of function
calculation to match the rate of encoding.

Level 2: Moderate Time Design. If there is additional computation time available after
completing Level 1, the desired complex function can be encoded by multiple algorithms and the
encoding that produces the most satisfactory diffraction pattern is selected. Example of this are
the hybridization of multiple encoding algorithms [9-11]. The hybridization is characterized by
one (or more) parameter(s) Y that defines which regions of the complex plane are encoded by
which algorithm. For instance, in the minimum distance-pseudorandom encoding algorithm (MD-
PRE) for phase-only SLM’s in Ref. [9], values of the scaled function Ya(x) (see Fig. 1a) with
magnitudes less than unity are encoded by pseudorandom encoding algorithm (PRE) [12,13] and
complex values with magnitudes greater than unity are encoded by minimum distance encoding
(MDE) [14]. The best performance in terms of specific fidelity measures (e.g. non-uniformity,
signal-to-peak-noise ratio) is usually found for a particular blending of MD-PRE as specified by
the value of Y. We are unaware of an a priori method to select or estimate the best value of y.
This leads to our proposal to adjust blending parameters based on the resulting intensity pattern
I(f) (as indicated by the innermost feedback loop in Fig. 1a.) The intensity pattern can be
simulated using the FFT, but it can be faster to use the OFT to produce a diffraction pattern and
then measure its intensity with a digital camera. Since only intensity, and not phase, is needed to
find the optimal value of vy, digital measurement and feedback of the diffraction pattern is
reasonably practical.
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Level 3: Maximum Time Design. If there is significantly more time available than required
to complete Levels 1 and 2, then DOE type design, which includes multiple iterations of a global
search and/or optimization method can be employed. The approach indicated in Fig. 1a is to
compose and evaluate multiple functions a (x) that satisfy the target intensities I;(f}). Generally
the higher the diffraction efficiency 1} of the complex valued function, the more closely J( f)
compares to I7(f) [15].

There are many methods possible to select the phase free parameters ¢; (e.g. Monte Carlo
selection, gradient search, genetic algorithms and projection onto constraints [15,16]) that could
be used in this block of the Fig. 1a flowchart. While a (x) can be computed using the IFFT, this
calculation can be avoided by superposition of known Fourier transform pairs, which can be
faster, as discussed above. Methods of optimizing a complex function followed by encoding is
classified by Mait as an indirect design method [16]. Mait observed that better performance is
achieved for direct methods, in which the available modulation values are directly adjusted to
produce the best solution, but that this may also entail a greater amount of computation than the
indirect method. It is the time constraints in real-time pattern generation that suggest our indirect
design strategy that is based on composition of fully complex functions followed by encoding.

One limitation of our indirect procedure is that by first selecting a (x) followed by encoding
can introduce deviations between I( ) and I(f) [16]. It is possible to compensate values of
resulting intensity I( f) that are greater (less) than the target intensities I (f) by reducing
(increasing) the magnitude scale of the corresponding functions g (x) in eq. (1) (e.g. using the
gradient method of Jared and Ennis [17].) Even with feedback of the resulting values of I(f)) to
adjust a(x) (dashed path in Fig. la) this modified procedure, though it has an increased
computational load is classified as an indirect design method.

Discussion: We have described a framework for on-line design of modulation patterns for
SLM’s used in a Fourier transform arrangement. The structure is designed to ensure that at least
one realization of the desired diffraction pattern can be implemented in as short a time as possible.
There are many algorithms that can be used to implement the various blocks, and we do not
restrict the system to specific algorithms. Instead, we focused on the relative computation times
of the major blocks in order to provide a first look at key issues limiting design time. A more
detailed analysis involving numerical and digital implementations of FFT’s, arithmetic and
function calculations, depends on many design- and application-specific issues and is beyond the
scope of this report. However, we did focus on ways in which the use of the FFT (by OFT) and
IFFT (by superposition of known Fourier transform pairs) could be avoided to reduce the
computation time. In contrast to Fig. 1a, consider Fig. 1b which shows a typical structure used in
the fixed pattern DOE design. This is the iterative Fourier transform algorithm (IFTA) [18].
Similar to Fig. 1a, the IFFT can be replaced by using superposition. The FFT in Fig. 1b could be
replaced with the OFT; however, in addition to intensity, phase also must be measured, which
requires more involved hardware [19] For the proposed framework in Fig. 1a, Level 1 provides
the shortest path to an initial design. If even shorter design times than possible with Level 1 are
required, then further customization of the design may be possible for some applications. One way
is to design for only a limited subset of the N SLM pixels. Examples of this approach are
presented in Section 4.

Portions of the proposed structure in Fig, 1a have been demonstrated in off line design studies.
InRefs. 9, 11 respectively we have demonstrated a one parameter, and a two parameter Level 2
tuning of blended encoding algorithms. In Ref. 15 Yang ef al. performed a Level 3 design which
attempts to maximize the diffraction efficiency of a(x) by three different search/optimization
procedures, followed by a single encoding. The problem is partitioned into separate, non-
interacting modules. There is no feedback of the resulting intensity J( f) to fine tune a (x) or the
encoding algorithm. These procedures require no evaluations by IFFT. Jared and Ennis used a
descent search method similar to the Newton-Raphson method to iteratively correct for changes
in the peak intensities of autocorrelations due to the SLM modulation characteristics [17].
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Vangular observed that this procedure can be directly adapted to improving the uniformity of the
intensity patterns from spot array generators [20]. This method corresponds to the feedback of ()
as indicated by the blue dotted path in Fig. 1a.

4. Ilustrative Scanning Sequences

To this point we have presented our conception of a real-time diffractive scanner/illuminator. We
have focused on speed limitations due both to framing time of SLM’s and computational rate for
on-line design systems. These discussions are intended to provide a perspective from which one
can appreciate the use of SLM’s as real-time scanners. In order to complete this picture we
demonstrate unique possibilities for scanning with diffractive SLM’s through the presentation of
experimentally recorded, live video sequences of the far-field patterns from a phase-only SLM.
Specific issues and considerations in using SLM’s in this way are brought out by these
demonstrations, including opportunities in certain situations for computational speedups.

The demonstrations all are performed with a 120 x 128 pixel (the 8 outermost columns of the
device are inoperative), reflective SLM from Boulder Nonlinear Systems, Inc. (BNS). The cell
is filled with nematic, parallel aligned liquid crystal. The laser polarization is linear and aligned
to a collimated green laser beam (532 nm) to produce phase-only modulation of up to 27. A lens
placed one focal length from a CCD video camera forms a Fourier transform on the imaging area
of the camera. Unless otherwise noted, the image of the diffraction pattern covers approximately
the entire area between the on-axis (0,0) diffraction order and the (1,1) diffraction order
(corresponding to the reciprocal of the pixel spacing). This region of the diffraction plane has 120
x 128 resolution cells or a SBWP of 15,360. There is always a very bright spot on the optical axis
which is due to Fresnel reflections from the cover glass and optical losses in the modulating layer
[9]. Aside from the on-axis spot the device performs very similar to an ideal phase-only SLM.
One other feature of the SLM is the subaperture that defines a pixel. This leads to a sinc? intensity
rolloff along horizontal and vertical axes of the diffraction plane, and a sinc* along the diagonal.
In some of the diffraction patterns this rolloff is compensated in the design. Additional details of
the experimental apparatus have been reported in Ref. 9.

At this time no complete on-line design system exists. The modulation patterns typically are
designed off-line and then loaded in sequence onto the SLM. In some cases, when only Level 1
design is adequate, the patterns are designed and loaded as created. Using a 100 MHz Pentium
computer and a C++ program this takes around 0.5 second per frame to compose and encode a
10 spot function. However, no efforts have been taken to optimize the numerical calculations.
Specifically we found that the computation time of a 128 x 128 FFT is about 4X faster than the
the time used to compose the 10 spot functions. This speed advantage is attributed to the FFT
implementation using precomputed values of the complex exponential. However, the purpose of
this section, rather them demonstrating speed, is to illustrate various scanning functions and to
suggest their usefulness.

Arbitrary scanning. Fig. 2a shows a sequence of five diffraction patterns composed of 63 to
73 spots. The movie shows a repeating sequence of the five images. This illustrates the ability of
the SLM to generate rather arbitrary images. Fig. 2b shows the entire area of the image that was
captured by the CCD camera. This is nearly the entire diffraction plane between the (0,0) and
(1,1) orders. The modulation patterns were designed by the IFTA (see Fig. 1b) followed by MD-
PRE of the resulting complex valued function a,(x). The performance of the theoretical design
for this movie (as well as for all the movies in this paper) is reported in Table 1. It is interesting
to compare the performance with a(x), the traditional IFTA design [which can be interpreted as
MDE of a,(x).] While IFTA followed by MD-PRE results in a lower diffraction efficiency than
traditional IFTA (73 % to 82 %), it has improved fidelity as measured by signal-to-peak ratio
(SPR, 12 to 3.5) and nonuniformity (NU, 19 % to 32 %). Using MD-PRE instead of MDE after
IFTA, produces a faint background speckle pattern across the entire SBWP (instead of isolated,
but more intense noise peaks.) Consequently, even though MDE has a higher signal-to-noise ratio
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(SNR) than MD-PRE (720 to 429), the lower average noise of MD-PRE, as measured by SPR,
represents the more faithful rendition of the desired diffraction pattern — especially for
applications that use the full SBWP of the SLM. These relationships between metrics have been
reported in detail our papers listed in References and links.

®)
Fig. 2. (a) (1.62 MB) Movie of arbitrary scanning by SLM, (b) image with (0,0) to (1,1) orders indicated

Table 1. Information on diffraction pattern images, design method and theoretical performance

Figure Width (%) Complex function composed by Encoding method 17 (%) NU (%) SPR SNR

Fig. 2 44 IFTA (Fig. 1b) MD-PRE ofa(x) 73 19 12 429
Fig.32 95 all &=0 MD-PRE, y=1 9 12 4 324
Fig.3b 95 same as Fig. 3a MD-PRE, y=c 11 9 3 404
Fig. 4 95 Based on max. 1} 1x7 array {9] MD-PRE, y=1.4 74 6 72 975
Fig.5a 55 random ¢, continuous f; MD-PRE, y=1.2 38 10 13 1004
Fig. 5b 5§ random ¢, discrete f; MD-PRE, y=1.2 38 10 13 1004
Fig.6a 100 periodic spatial interleaving none 100 0 oo oo

Fig.6b 100 random spatial interleaving none 8 17 2 89
Fig.7a 87 aperture subdivision MD-PRE, y=1.5 61 - - -

Fig. b 87 superposition and subdivision =~ MD-PRE, y=1.5 54 - - -

Fig.8a 46 Select ¢, randomly MD-PRE, y=1.3 25 9 12 111

Theoretical performance: Measured from 128 x 128 FFT of designed function for one selected movie frame.
Width: Width of movie image in x as relative to SBWP in x (i.e. grating frequency). Most images are square.
1: Diffraction efficiency — Ratio of energy at the desired frequencies to energy in the entire diffraction pattern.
NU: Nonuniformity — Standard deviation of the intensity of the spot array relative to the average spot intensity.
SPR: Signal-to-peak-ratio — Average intensity of the spots relative to intensity of the largest noise sidelobe.
SNR: Signal-to-noise-ratio — Average intensity of the spots relative to the average background noise.

Reduction of sidelobes. The problems with noise sidelobes can be better appreciated by
comparing the result of encoding the same desired functions by two different encoding algorithms.
The particular scanning sequence has five spots moving on five different trajectories. Fig. 3a is
the result for MD-PRE and Fig. 3b is the result for using MDE. MDE maps the desired function
the closest distance to the available modulator values. This results in a minimum mean squared
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error design. However, this systematic method of mapping produces distinct sum and difference
frequencies (akin to a hard limiter in communications.) The sidelobes in Fig. 3b are much more
intense, and thus, easier to falsely classify as desired signal than the background speckle in Fig.
3a.

@) ®)
Fig. 3a. Movies of sidelobe generation by (a) MD-PRE (2.41 MB) and by (b) MDE (2.41 MB)

Pattern translation. In some cases it may be desirable to scan a desired pattern to several
locations as illustrated in Fig. 4. With a continuous phase, phase-only SLM, scanning of a desired
function can be particularly efficient. The computation involves addition of the desired function
to a phase ramp, followed by modding the phase, as needed, back into a 27t phase range. Thus
while the Fig. 4 image requires the addition of 49 functions to compose the desired modulation,
the position can be changed by adding a single function to the encoded function. Note that the
design of the desired complex function is based on published maximum diffraction efficiency
designs for one dimensional arrays of spots [1]. A numerically efficient method of function
composition [O(N) multiplies] is used to compute the one dimension modulation and then form
the outer product of the modulation with itself.

Fig. 4. (1.91 MB) Movie of translation of a fixed pattern.
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Continuous scanning. The examples presented so far do not demonstrate continuous scanning.
Fig. 5a and the corresponding movie show scanning at various rates from x to y diffraction limited
spots diameters per frame. Fig. 5a specifically shows the sum of the multiple frames in the movie.
The line rotates 2° per frame and the spots are separated by 6 diffraction limited spot diameters.
The fifth line from the pivot point in Fig. 5a corresponds to approximately a one pixel per frame
rotation rate. Lines of this radius or less should (and do) appear continuous and lines at greater
radii should appear as discrete samples. For the sixth and seventh lines there is still some overlap
between the individual spots, which is due to camera saturation and contrast adjustments to the
published image. The desired function is composed by addition of complex sinusoids of arbitrary
frequencies. A second method of composition is to use the IFFT. Fig. 5b illustrates the result of
using a 128 x 128 point IFFT to synthesize a spot pattern. As opposed to Fig. 5a, in Fig. 5b the
spots only form at the discrete frequencies corresponding to the frequency sample points of the
IFFT. Continuous scanning can be approached by increasing the number of sample points in the
IFFT, but at an increasing computational cost. In some cases smaller IFFT’s could be used, as
well. If the desired modulation is periodic, then one period of the function can be calculated
followed by copying or repeating the function to the full size of the SLM. This would be possible
for the function used to produce the 7 x 7 spot array in Fig. 4, which consists of a 4 x 4 array of
unit cells.

® ®)

Fig. 5. Movies of continuous scanning (a) by composition (579 KB) and (b) by 128 x 128 IFFT (611 KB). The
fixed images in this figure are the summations of the images from the entire sequence.

Replicated scans in parallel. One useful scanning arrangement is to scan the same pattern
over multiple fields in parallel. This can be accomplished by under-sampling the SLM, which
produces replicas over the full SBWP of the diffraction plane. An example of this is shown in Fig.
6a. Here a sample of the desired function is programmed every fourth pixel in x and y. In this
example 16 linear phase ramps are spatially multiplexed to produce 16 spots replicated into 16
regions. Because each elementary function is phase-only and spatially orthogonal this modulation
function has a theoretical diffraction efficiency of 100%. With 256 spots the entire 120 x 128
SBWP of the diffraction plane could be systematically scanned in 60 frames. This corresponds
to an equivalent raster scan rate (using a single spot scanner) that is twice the SLM frame rate.

A simple way to produce a nearly identical pattern without replications is to randomly sample,
rather than regularly sample the desired function. This method was originally reported by Davis
and Cottrell [21]. The method does generate speckle. An example of this design method is
presented in Fig. 6b. A speckle pattern background is produced as a result of the random spatial
multiplexing of the multiple functions. Also the intensity of individual spots can be adjusted by
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increasing or decreasing the percentage of the time that the corresponding modulation function
is sampled.

@ ®)

Fig. 6. Movie of (a) parallel replicated scanning by periodic sampling (2.13 MB) and (b) by non-replicated
scanning by random sampling (2.23 MB) of the elementary functions.

Variable resolution scanning. Another method of increasing scanning speed (mentioned in
Sec. 2) is to design spots that have greater widths than the diffraction limited spot width of the
SLM aperture. For the result shown in Fig. 7a, the desired modulation plane function is divided
into 9 square regions (32 x 32 pixels each), 2 rectangular regions (60 x 32 pixels) and 1
rectangular region (24 x 96 pixels). Each region is filled with a circular or elliptical aperture
function of unity transmittance. The surrounding region of zero transmittance is encoded by MD-
PRE. The resulting Airy diffraction patterns are desirable because the first diffraction ring is
considerably lower in intensity than the sidelobe of sinc® patterns. In Fig. 7b a second layer of

Fig. 7. Movie of multiple widened spots (a) by parallel division of the SLM into multiple SLM’s (578 KB) and
(b) by adding two sets or layers of spatially multiplexed functions together (1.12 MB.)
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elliptically windowed functions is added to the first layer of functions to produce the three
additional spots. Two of the bounding rectangles are 120 x 20 pixels and one is 30 x 30 pixels.

Time-averaged scanning. Statistically based encoding algorithms [9-13] necessarily produce
noise which is manifested as deviations of the actual diffraction pattern intensities from the
desired intensities and speckle background. As seen in Figs. 3-7, these noise effects can be kept
to manageable levels for many practical designs. However, these effects can be reduced further
by ensemble averaging. Specifically, statistical encoding algorithms produce the desired intensity
pattern on-average plus a background that corresponds to the average speckle intensity [12].
Multiple realizations are produced by performing repeated encodings of the desired modulation
function. For each encoding a unique random sequence is used. The resulting diffraction plane
intensity patterns are averaged together. An experimental demonstration of this procedure for an
encoding of an apodized aperture is presented in Ref. 12. Fig. 8 illustrates the improvement in
performance of the 7 x 7 spot array design of Fig. 4 for 50 realizations used in the average. The
computational load is O[N] function calculations for each encoding and O[N] additions to add the
new intensity pattern to the ensemble. Therefore, if the pattern is not changing over multiple
cycles, then a time-averaging procedure can be used to produce a more accurate realization of the
desired diffraction pattern, with minimal increase in the computational requirements.

@ ®)

Fig. 8. Image of (a) individual realizations of the spot array (337 KB) and (b) average result of 50 individual
realizations of the spot array.

Broad area scene illumination. Modulation patterns can be specified that uniformly illuminate
the diffraction plane. As pointed out in Section 1, there is no energy advantage to using diffractive
SLM’s for this purpose. However, the addition of a broad illumination capability to a multi-spot
pattern generator could prove useful for adaptive tracking and designation of objects. While, it
should be possible to designate objects and update their positions based on changes in the
intensity of the spots reflected from objects, a broad area search is required initially to identify
the objects of interest. Using the SLM to illuminate the scene reduces the amount of hardware
needed, since a single video camera can be used to observe the entire scene and to monitor the
intensity of laser spots reflected from the objects in the scene. Laser illumination is not only
required for use in the dark, but it also is useful for lighted scenes. In lighted environment, a
narrowband color filter would be placed over the camera to remove other contributions of light
and to maximize the detectability of the laser returns. In some situations the laser illumination
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even can be weak enough to go unnoticed by an observer in the scene.

To produce broad area illumination we programmed the SLM with a sequence of random
phases that are uniformly distributed between 0 and 27t. This diffuser produces a speckle pattern
at the Fourier transform plane on a copper coin. The coin is illuminated and imaged at ~20° from
vertical (Fig. 9a.) The illumination quality can be brought closer to that of incoherent light by
averaging multiple realizations of the diffuser. Fig. 9b shows the average image for illumination
with 50 statistically independent diffusers.

Fig. 9. Image of (a) individual realization of a speckle-illuminated coin and (b) average result of 50 individual
realizations of the speckle-illuminated coin.

5. Summary and Conclusion

Using a frame-addressed SLM in a Fourier transform arrangement provides a variety of intensity
patterns that may provide much more general scanning capabilities than is possible with
traditional inertial type scanners. This increased flexibility comes at a cost of an increased
computational load. However, if the system is used as part of a multi-object tracking system or
ina vision-guided robotic navigation system, then the computational load associated with on-line
design of the diffraction patterns may be commensurate with the loads associated with image
processing and supervision of the entire system. In light of the available response time of an
adaptive system, a general approach to on-line diffraction pattern has been presented that
emphasizes producing designs of increasing fidelity as more computation time is available. The
general approach requires iterative optimization or global search if adequate time is available.
However, specialized modulation patterns can be devised using spatial multiplexing (as in Figs.
6 and 7) that do not require either optimization or encoding. Other situations can be exploited for
speedups, such as translating an identical pattern (in Fig. 4) or imposing special structure on the
desired function (e.g. rectangular separability in the design of the spot array in Fig. 4 [13]). Many
other possibilities might be exploited by taking into account the scene environment (e.g. spatial
extent, velocity and number of objects in the scene.)

Based on the above considerations we believe that affordable scanning systems could be
developed that run at practically useful rates. These systems could provide powerful advantages
to advanced and intelligent military and commercial systems. The SLM scanners could be used
to convert a single laser target designator into a multi-target designator. It could be applied to
long range designation of objects in outer space, to shorter range designation on the battlefield,
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and to close-in weapons defense of naval vessels. For autonomous control a vision system with
multi-object tracking is needed to steer, point and adapt the laser spots. A commercial application
of the same system is to coordinate the activities of several distributed robotic package handlers.
Lasers used to highlight the packages would make their motion easier to track with machine
vision. A laser pattern generator and vision system mounted on a mobile robot could support
feature-based navigation. The further development of a diffractive SLM based scanner would be
interesting and challenging in terms of algorithm refinement and integration.
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Error diffusion (ED) and pseudorandom encoding (PRE) methods of designing Fourier transform holograms
are compared in terms of their properties and the optical performance of the resulting far-field diffraction pat-
terns. Although both methods produce a diffuse noise pattern due to the error between the desired fully com-
plex pattern and the encoded modulation, the PRE errors reconstruct uniformly over the nonredundant band-
width of the discrete-pixel spatial light modulator, while the ED errors reconstruct outside the window of the
designed diffraction pattern. Combining the two encoding methods produces higher-fidelity diffraction pat-
terns than either method produces individually. For some designs the fidelity of the ED-PRE algorithm is
even higher over the entire nonredundant bandwidth than for the previously reported [J. Opt. Soc. Am. A 16,
2425 (1999)] minimum-distance-PRE algorithm. © 2000 Optical Society of America [S0740-3232(00)00609-8]

OCIS codes: 230.6120, 090.1760, 070.2580, 030.6600.

1. INTRODUCTION

This paper continues an ongoing study on the develop-
ment of new procedures for designing Fourier transform
holograms.'® The focus of the study has been to develop
algorithms that can be computed in real or near-real time
and that demonstrate good (rather than optimal) optical
performance within the available time constraints for
practical spatial light modulators (SLM’s). These con-
straints frequently include that the SLM represents only
a limited range of complex values (e.g., phase-only, quan-
tized phase-only, coupled amplitude-phase) and that the
SLM has a relatively small number of pixels [or equiva-
lently, space-bandwidth product (SBWP)] compared with
fixed-pattern diffractive optical elements and holograms.
The motivation behind this research is the development
of programmable optoelectronic systems that can auto-
matically design and implement Fourier transform holo-
grams in response to the unanticipated data presented by
real-world situations.® Examples of such proposed sys-
tems include multispot-laser beam-steering systems, mul-
titarget laser designator systems, and distortion-
invariant pattern recognition systems implemented with
composite filters in a coherent optical correlator.?

On the basis of these constraints of the SLM and of the
real-world environment, we have avoided computation-
ally intensive global searches for an optimal modulation,
and instead we have considered both (1) noniterative en-
coding of the desired complex-valued function into a spa-
tial modulation pattern and (2) iterative encoding in
which one, or a few, free parameter(s) are varied to pro-
duce a suboptimal design.

Single-pixel encoding® (rather than group-oriented
encoding)!®!! is used. It maps each desired complex
value into the modulation value of a corresponding single
pixel, without consideration of the modulation values of
the surrounding pixels. Single-pixel encoding has the
advantages of low computational overhead, and the en-
coded modulation can have a SBWP that is identical to
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the SBWP of the desired (spatially sampled) signal.
Since the SBWP of the SLM is identical to the number of
pixels in the SLM, the far-field diffraction pattern can be
reconstructed anywhere within the nonredundant band-
width (NRB), i.e., the reciprocal of the pixel pitch.
Group-oriented methods produce unwanted diffraction
patterns within the NRB, which reduce the usable band-
width to less than the SBWP of the SLM. Examples of
single-pixel encoding include

1. Minimum-distance encoding? (MDE), in which each
desired complex value is mapped to the closest modula-
tion value produced by the SLM. For continuous-phase,
phase-only SLM’s this corresponds to the classical
kinoform®® or, in the case of pattern recognition filters,
the phase-only matched filter.1*

2. Pseudorandom encoding’*-® (PRE), in which mul-
tiple modulation values are randomly selected on a per-
centage basis so that the expected value of the modulation
equals the desired complex value.

3. Blended methods (referred to as MD-PRE)%%8 that
encode some desired values by MDE and other values by
PRE.

Error diffusion’® 20 (ED) is yet another way to encode
complex-valued functions in much less computation time
than is required with global search methods. As with
single-pixel methods, each desired complex value is en-
coded as a modulation value of a corresponding SLM
pixel. However, the modulation value is also determined
by the encoding errors (the difference between a desired
value and an encoded value) of a few nearby pixels that
have previously been encoded. The weighting factors for
encoding errors are chosen so that the Fourier transform
of the encoding errors is spatially separated from the de-
sired diffraction pattern. Thus, as with group-oriented
encoding, the ED reconstruction is limited to a bandwidth
that is a fraction of the NRB of the SLM. This limitation
does not restrict the location of the reconstruction within

© 2000 Optical Society of America
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the NRB, since the error weighting factors can be changed
for each ED design to maintain separation between the
error and the desired reconstruction.!® However, the de-
sign of such weightings can be numerically complex or
even impractical for desired patterns that span the NRB
(e.g., a pattern of a few widely separated, randomly lo-
cated spots.)

For wide-bandwidth diffraction patterns it may be sim-
pler to use PRE methods for which the encoding errors re-
construct as a uniform-level noise pattern over the entire
NRB. Thus, rather than using spatial separation be-
tween the desired pattern and the error pattern to obtain
good performance, PRE attempts to distribute the error
energy over the entire NRB, which results in low average
error intensity everywhere. However, the maximum-
intensity noise peak can be on the order of 10X larger
than the average noise intensity. This is a consequence
of the error pattern statistics, which are identical to the
statistics of laser speckle;! specifically, the error pattern
intensities are exponentially distributed, which makes
possible a few noise peaks that are much more intense
than the average. MDE also tends to produce a few
bright noise spikes that appear at sum and difference fre-
quencies of the desired pattern. Particular blendings of
MDE with PRE have been demonstrated to produce lower
peak noise (and also more accurate approximation of the
intensities of the desired diffraction pattern) than either
method individually.38?! We note that the reduction of
noise spikes, particularly in spot array generators de-
signed with a minimum-distance criterion, has been a mo-
tivation both for ED by Kirk et al.'® and for MD-PRE. 38

In this paper we present, to our knowledge for the first
time, comparisons of ED and PRE in terms of their prop-
erties and optical performance. The general differences
that we discussed above are brought out further by appli-
cation of each encoding method to the same desired fully
complex function and comparison of the resulting diffrac-
tion patterns. In addition to reviewing the ED and PRE
algorithms, we show that a hybrid algorithm can be con-
structed out of the individual ED and PRE algorithms.
We show that the ED-PRE blended algorithm outper-
forms both ED and PRE in terms of two fidelity metrics
that measure noise spikes and accuracy between the de-
sired and the resulting diffraction pattern. We also in-
clude comparisons of the blended ED-PRE method with
the earlier MD-PRE method.

Section 2 presents a mathematical description of each
algorithm evaluated in the study. Their performance is
evaluated by computer simulation. The simulation pro-
cedure is described in Section 3, and the results and the
performance comparisons are presented in Section 4.

2. DESCRIPTION OF THE ENCODING
ALGORITHMS

The algorithms presented in this paper are specialized for
phase-only SLM’s that produce any value of phase con-
tinuously over 360°. Encoding algorithms for many
other modulation characteristics are possible. A few of
these include encoding for amplitude-phase coupled,®512
binary quantized,’® and m-ary quantized character-
istics 88121721 Although specifying and evaluating such
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a variety of algorithms is beyond the scope of this paper,
this section would also help in the development of blended
algorithms for modulation characteristics other than
phase-only. We first present the three individual algo-
rithms MDE, ED, and PRE, followed by blended MD-
PRE and the new ED-PRE.

When algorithms are encoded a desired modulation is
specified. The desired function will be considered to be a
discretely sampled two-dimensional array of, in general,
complex numbers. The x coordinate will be associated
with the index i and the y coordinate with index j. For
the simulations in this paper the desired function and the
SLM pixels always are equally spaced. A fully complex
value from the desired function is written as a;; where
boldface indicates a complex-valued quantity. After en-
coding, the function is mapped into the SLM modulation
values a ;.

A. Minimum-Distance Encoding

MDE is presented because (1) it is a limiting case of ED
when all the nearby error weighting coefficients are set to
zero, (2) it is part of the blended MD-PRE algorithm, and
(8) for phase-only SLM’s it has the interesting property of
producing the maximum diffraction efficiency for any en-
coding of a given complex-valued function.?? An equiva-
lent statement is that MDE produces the smallest total
encoding error.

MDE is illustrated in Fig. 1(a). The unit circle repre-
sents the complex modulation characteristic of a phase-
only SLM. The encoding algorithm is a direct point-by-
point mapping of the desired value (along radial lines) to
the closest point on the modulation characteristic, which
is identical to kinoform design. The MDE algorithm for
continuous phase-only modulation is written

a;; = expljarg(a.;)], @

which has error
eij=ac,-j—a,-j. (2)
Desired values of any magnitude [0,%] are mapped to the

unit circle, as illustrated in Fig. 1(a).

B. Error Diffusion
ED [Fig. 1(b)] can be viewed as a modified version of MDE
in that the value

a;; = exp[jarg(b;;)], 3)
where
b;j=ac;+ (g1, + €;-1)/2, CY]
is a perturbed value of a;; and where the perturbations
are the errors
eij=bi—ay (5)

for two nearest-neighbor samples to a.;;. The specific
error samples and their weights (1/2 each) are identical to
those used by Weissbach et al.l” Other combinations of
weights and error samples have been used to vary the er-
ror reconstruction pattern.!® The specific algorithm
given here will be used in the computer simulations that
follow.
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Fig. 1. Illustration of the encoding methods: (a) MDE, (b) ED, (c) PRE, (d) MD-PRE, (e) ED-PRE for b ; outside the unit circle, (f)
ED-PRE for b ;; inside the unit circle. The error diffused forward from previously encoded pixels is represented in the illustration by
8= (8;_1,; + &;, j-1)/2. In(f) the encoding error &’ = &/x, where ¢ is the amount of the encoding error that is diffused forward with

use of Eq. (4).

C. Pseudorandom Encoding

For each desired complex value a.;;, PRE prescribes a
random (complex-valued) variable a;; such that the ex-
pected value (a;;) = a.;;. One way that this condition
can be met for phase-only SLM’s is illustrated in Fig. 1(c).
Here the encoded phase is ¢;; = arga;;) = ¢, * v;;/2,
where y.;; = arg(a;;) is the desired phase and *v;;/2 is
a phase offset. The positive or negative sign is randomly
selected, each with a probability of 50%. If the uniformly
distributed random variable s;; € [—0.5,0.5] is used,
then the phase can be encoded as ;= ¢y
+ sgn(s;)v;;/2. For this phase random variable the ex-
pected value of complex transmittance is

(a;;) = cos(v;;/2)exp( ). (6)

Values of the desired magnitude |a .| e [0, 1] are then
encoded by choosing values of »;; € [0, 7] such that

Vij = 2arccos(|acij|). (N

We will refer to this specific PRE algorithm as the inverse
cosine algorithm.’

The error for encoding a single desired value is calcu-
lated by Eq. (2) with the encoded complex modulation a ;;
as calculated in this subsection. This definition of encod-
ing error differs from that in our previous papers.!® In
the earlier studies the average error contribution result-
ing from encoding a single pixel was evaluated rather
than the actual contribution. This distinction is impor-
tant because while several PRE algorithms have been de-
veloped for phase-only SLM’s, they produce identical av-
erage errors and diffraction patterns of essentially

identical performance.” However, when these various al-
gorithms are blended with ED, (1) the actual error contri-
butions are error diffused and (2) the performance of the
diffraction patterns differs depending on which PRE algo-
rithm is used.

For the particular desired functions a.;; that we con-
sidered in this study, the inverse cosine PRE algorithm
produces somewhat higher-fidelity reconstructions than
the inverse sinc PRE method! and the phase reversal
PRE method described in Sec. 8.C of Ref. 8. Therefore
detailed simulations made with these alternate PRE algo-
rithms are omitted because they provide little additional
information over the results (presented in Section 4)
found with the inverse cosine algorithm.

D. Blended Minimum-Distance Psendorandom
Encoding

MD-PRE was first introduced in Ref. 2 and has been fur-
ther developed in Refs. 3 and 8. This method trades off
desirable performance properties of the MDE algorithm -
with those of the PRE algorithm. MDE applied to a
phase-only SLM is known to produce the highest possible
diffraction efficiency for a given function of any encoding
algorithm.?? However, MDE is quite susceptible to inter-
modulation distortion?® and (especially for spot array gen-
erators) can produce large sidelobes at sum and difference
frequencies of the desired diffraction pattern.? PRE re-
sults in lower diffraction efficiency, and the errors be-
tween the desired and the resulting design are due to in-
terference with background speckle, which is a necessary
by-product of the PRE method. Various simulations and
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experiments have shown that blending leads to overall
better performance.2®8 Specifically, the background
speckle intensity is reduced and the efficiency is increased
over PRE alone, and the distortion and sidelobe levels are
reduced over MDE alone.

The MD-PRE algorithm can be expressed as follows:

If |a. ;]| > 1 encode by MDE algorithm [Eq. (1)] as il-
lustrated in Fig. 1(a).

Otherwise encode by PRE algorithm in Subsection 2.C
as illustrated in Fig. 1(c).

The combined algorithm is illustrated in Fig. 1(d).

The performance of the algorithm depends on a single
free parameter y. This parameter is the maximum mag-
nitude of the desired complex values a.;;. With PRE it
is possible to encode only values of magnitude less than or
equal to unity.” Therefore for PRE alone we normally
scale the complex values of the desired function so that y
equals unity. PRE also permits encoding for values of y
that are less than zero, but this produces increased levels
of speckle noise and lower diffraction efficiency.* How-
ever, MDE can encode values of any magnitude. For
MD-PRE we have always found a particular value of y
greater than unity that minimizes the approximation er-
rors and another value that minimizes the maximum-
intensity noise sidelobe in the diffraction pattern. Cur-
rently there is no method that provides an a priori
estimate of the optimal value of y. Instead, the best
value of vy is found by repetitive simulations of the encod-
ing algorithm. We will show in Section 4 that the free
parameter yalso controls the performance of ED and ED-
PRE algorithms.

E. Blended Error-Diffusion Pseudorandom Encoding
The blending of ED with PRE is similar in philosophy to
the blending of MDE with PRE. However, there are mul-
tiple possible ways that this might be accomplished.
Among the various blending approaches we have consid-
ered are the following:

1. Apply ED [Eq. (3)] to values of b;; outside the
unit circle and apply PRE to values of b ;; inside the unit
circle. The error from Eq. (5) for values encoded by ED is
diffused forward by use of Eq. (4). The error from Eq. (2)
for values encoded by PRE is not diffused forward; i.e., it
is treated as zero in Eq. (4). The rationale for this is that
the average error produced by PRE is automatically dif-
fracted into speckle background and does not also need to
be diffused into adjacent pixels.

II. Same as I except that the average error from PRE
is diffused forward by Eq. (4).

III. Same as I except that the actual error from PRE
is diffused forward by Eq. (4).

IV. Same as I except that a fraction y e [0,1] of the
actual error from each PRE encoded value is diffused for-
ward by Eq. (4). We will define the amount of error that
is diffused from a PRE encoded pixel (rather than the to-
tal error) as

g;;=x(bi — a;j. (8)

We empirically found through various simulations and
experimentation that method IV (for optimized values of
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x) produces significantly better performance than meth-
ods I and II and somewhat better performance than
method III. The sensitivity of method IV with respect to
values of ¥ € [0.5,1] is apparent though not dramatic (as
is illustrated in Section 4.) Therefore the performance of
method IV depends on the two free parameters y and y.
Since PRE, MD-PRE, and ED-PRE all use random vari-
ables, the performance of each algorithm also depends on
the particular random sequence used. In Section 4 we
also present the variations in performance for an en-
semble of random sequences. We are not recommending
that ED-PRE be optimized in terms of all three variables
(7, x, and which sample of an ensemble of random se-
quences is selected) for our envisioned real-time and near-
real-time applications, but rather we present these analy-
ses to provide insight into the performance of the
algorithms.

In the remainder of this paper, method IV will be re-
ferred to as the ED-PRE algorithm. It is implemented
as follows:

Given the N = nm desired values a;, N uniformly
distributed random numbers s;; € [—0.5, 0.5], and spe-
cific values for y and y,

1. Normalize all Na;; so that the maximum of the
values |a ;| equals y.

2. Fori=1tonandj=1tom.

3. Calculate b;; using Eq. (4).

4. If|b;| > 1 Encode b; to a;; using Eq. (3) Calcu-
late encoding error ¢;; using Eq. (5). Otherwise Encode

input
Y X Sy » ’cy‘
¥
initialize
g=y/max(a. )
at:lj =qa i
g;=0
G.N=(0,0)
increment (i, j) |
by=a,,+ (&, ,+8 .V2 Eq (4)
a,=exp[jarg(b))lL, Eq ()
&, =b,-a, Eq. (5)
;=2 arccos () Eq. (D
a,= exp{j [arg(b,) + sgn(s) v/ 21}
&y=2(by-3y) Eq.(8)

Fig. 2. Flow chart for the ED-PRE algorithm.
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b;; to a;; using the PRE method in Subsection 2.C and
Calculate ¢;;, the encoding error to diffuse forward, using
Eq. (8).

A detailed flow chart of the complete ED-PRE algorithm
is presented in Fig. 2. Figures 1(e) and 1(f) graphically
illustrate the blended encoding process for values of b ;;
both inside and outside the unit circle.

3. SIMULATION PROCEDURES

This section presents simulated diffraction patterns for,
and evaluates the performance of, the various encoding
algorithms for two specific test patterns, and the proce-
dures used in those experiments, are described.

The ED, MD-PRE, and ED-PRE, as described in Sec-
tion 2, are implemented for values of y e [1, 2. 5] in in-
crements of 0.1. PRE corresponds to MD-PRE with
y =1, Also, the performance of MDE is reported. It
corresponds to MD-PRE with y = «. It was observed
for the functions encoded in this study for y = 2.5 that
the performance of MD-PRE is nearly identical to the
performance of MDE. ED-PRE is implemented for val-
ues of y € [0, 1] in increments of 0.1. One set of simu-
lations is performed, with the identical set of random
numbers s;; used for each encoding and for each value of ¥
and . These simulations are used to make direct com-
parisons of the performance of the algorithms. A second
set of simulations is performed to determine the statisti-
cal variations in an ensemble of runs. For this evalua-
tion the simulation is repeated an additional 20 times,
each time with a different N sample sequence s;;. The
best-case and worst-case performance is reported for the
21 trials of each algorithm over a range of values of y and
for fixed values of y.

Two test functions are selected for encoding. For con-
tinuity with our previous studies we use the same
N = 128 x 128 pixel test function a ;;, which produces a
7 X 7 spot array.5® This function reconstructs off axis.
The function was selected because it is typical of current
diffractive optic designs that have diffraction efficiencies
close to the theoretical maximum.?? Specifically, when
the fully complex function is encoded by MDE, the diffrac-
tion efficiency % is found to be 96% (see Table 1 and 2 be-
low). The fully complex function itself has a diffraction
efficiency of ~44%. The efficiency indicates how much
amplitude information is in the function. Since diffrac-
tion efficiency of the fully complex function a,;; can be
shown to be identical to the average intensity of the
modulation,? the square root of 7 gives the root-mean-
square amplitude of the complex function of 0.66. This
shows that a significant part of the fully complex function
is not phase-only and requires some type of encoding.
For comparison, the diffraction efficiency of a fully com-
plex function used to generate a 49-spot array can be as
low as 2% (when the phases of all diffracted spots are
identical), and the root-mean-square amplitude is then
0.14. We know that the encoding errors [see Egs. (2), (5),
and (8)] would be greater and the performance would de-
crease for the lower-efficiency complex function;* how-
ever, further consideration of this point is beyond the
scope of this paper.
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The second test function is identical to the first except
that a linear phase ramp has been removed from the first
test function, so that its diffraction pattern reconstructs
centered on the optical axis. Diffraction patterns cen-
tered at multiple locations are evaluated to give a more
complete appreciation of the performance of the various
encoding algorithms. (However, in practice one should
anticipate the presence of an on-axis order because of
practical limitations in perfectly controlling the fabrica-
tion of a diffractive optic or the phase settings of a SLM.)

The diffraction pattern is simulated by performing a
fast Fourier transform (FFT) of the test function. The
modulation value of an SLM pixel is represented by a
single complex number. The 128 X 128 array of num-
bers is zero padded to form a 512 X 512 array that is
transformed by the FFT. The padding samples and in-
terpolates the diffraction pattern at 1/4 the diffraction
limit, thus producing a realistic-looking diffraction pat-
tern.

Diffraction patterns simulated in this way are evalu-
ated to determine signal-to-noise ratio (SNR), signal-to-
peak-noise ratio (SPR), and nonuniformity (NU). NU
measures the relative deviation of the spot array from
perfectly uniform. The peak intensities of the 49 spots is
measured. The average and standard deviation of the in-
tensities are calculated, and NU is the ratio of the stan-
dard deviation to the average intensity.

The average intensity of the 49 spots is also used in
SNR and SPR calculations. For SNR the average spot
intensity is divided by the average noise intensity. For
SPR the average spot intensity is divided by the peak-
noise sidelobe. The noise intensities are calculated with
use of the entire 512 X 512-sample diffraction pattern re-
gion excluding a 128 X 128 window that just surrounds
the spot array.

In previous studies we have used SPR and NU as our
key measures of fidelity.>® We also have reported SNR
to provide comparisons with the work of other authors.
However, since ED does not uniformly distribute noise of
the full NRB, we also calculate a reduced-bandwidth SPR.
For the modified SPR (SPR,,) the peak-noise intensity is
found by using the intensity pattern that occupies the
central 256 X 256 of the 512 X 512-sample image of the
diffraction pattern.

In addition, the diffraction efficiency 7 is evaluated.
However, rather than using the 512 X 512 FFT, we cal-
culate the FFT of the 128 X 128 array directly without
the zero padding. Efficiency is calculated as the sum of
the intensities of 49 spots divided by the total energy in
the 128 X 128-point diffraction pattern. This analysis
does not take into account device-specific pixel aperture
effects that determine the amount of energy diffracted
into higher-order replicas that are outside the NRB of the
diffraction pattern.

Gray-scale images of the intensity patterns are
presented for several encodings to provide additional
information on the generation of background noise.
To bring out the background noise, we saturate the
gray-scale level in each image so that full white corre-
sponds to 3% of the average peak intensity. In each case,
images of the entire NRB (i.e., all 512 X 512 samples) are
shown.
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4. COMPARISONS OF THE ENCODING
ALGORITHMS

The results of encoding by ED, MDE, MD-PRE, and ED-
PRE are presented in this section. Results for both on-
axis and off-axis test functions are given. For each func-
tion the discussion first focuses on results derived with
the single random sequence s;; and preferred values of y.
Then the results are presented of the sensitivity analyses
as a function of y and for the ensemble of 21 random se-
quences.

For better appreciation of the property improvements
possible with blended algorithms, we first present some
reference designs using ED and MDE. Figure 3 shows
how the background noise differs as a function of y for the
ED algorithm. For the ED algorithm as described in Ref.
17 the value of yis presumably 1. The resulting diffrac-
tion pattern is shown in Fig. 3(a). The most pronounced
noise appears at the corners of the 512 X 512-sample
image. Faint noise peaks from the noise cloud extend
out into the upper-left and lower-right corners of the
(256 X 256-sample) reduced-bandwidth window. For
v = 1.2 the peak noise at the corners of the image [Fig.
3(b)] is reduced, and faint noise spikes appear over a
larger extent of both the full NRB and the reduced-
bandwidth window. An even more uniform distribution
of noise spikes is seen in Fig. 3(c) for y = 1.3. For ynear
1.6 the image [Fig. 3(d)] closely resembles the MDE de-
sign [Fig. 3(e)]. This result was unexpected. However,
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if v is increased further, the diffraction pattern becomes
quite distorted and no longer resembles the MDE design
[Fig. 3(f)].

To gain some insight into the similarity between the re-
sults for MDE and ED with y = 1.6, we produced histo-
grams of the deviations |a.;; — ap ;| between the en-
coded values produced by ED and by MDE, where the
subscripts e and m designate values encoded by ED and
MDE, respectively. Since the encoded values are on the
unit circle, the largest deviation possible would be 2. For
v = 1 more than 50% of the deviations of the 16,384 pix-
els are larger than 0.6. For y = 1.1 the histogram is
nearly uniformly distributed over the full range from 0 to
2. However, as y is increased further, the histograms
have an increasing number of deviations near zero. For
v = 1.5 the deviations are less than 0.25 for 87% of the
pixels, and there are deviations in excess of 0.6 for less
than 4% of the pixels. For y = 1.6 only 82% of the devia-
tions are less than 0.25; but an even smaller amount, 1%
of the deviations, exceed 0.6. The ED gray-scale image
appears most similar to the MDE image when the num-
ber of large deviations are minimized. As yis increased
further, the percentage of large deviations increases to
the point that the histogram becomes nearly uniformly
distributed between 0 and 2. Thus for the encoding of
the particular test function, the ED design tends to con-
verge to, and produce a somewhat close approximation to,
the MDE diffraction pattern for yin the range 1.4-1.7.

Fig. 8. On-axis diffraction patterns for encoding by (a)~(d) and (f) ED and (¢) MDE. The value of y used for ED is (a) 1.0, (b) 1.2, (c)
1.8, (d) 1.6, and (f) 5.5. The dotted square encloses the area used to calculate SPR,,. The gray-scale intensities are scaled so that full
white corresponds to 8% of the average peak intensities of the 49 desired spots.
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Fig. 4. (a)-(c) On-axis and (d)-(f) off-axis diffraction patterns for the maximum SPR design by (a) ED, y = 1.5; (b) MD-PRE,
v = 14; (c) ED-PRE, ¥ = 1.3, x = 0.6; (d) ED, y = 1.5; (¢) MD-PRE, y = 1.4; f) ED-PRE, y= 13, x = 1. The gray-scale normal-
ization and the dotted square are identical to those used in Fig. 3.

A. Comparisons of On-Axis Designs

Figures 4(a)-4(c) show the background noise produced by
ED, MD-PRE, and ED-PRE designs that have been
tuned by y and y to produce the maximum value of
SPR. Several performance metrics for each of these de-
signs are reported in Table 1. For the ED algorithm with
¥ = 1.5 [Fig. 4(a)] the noise peaks appear to be even more
uniformly distributed than for any of the designs in Fig.
3. For the MD-PRE algorithm [Fig. 4(b)] the noise back-
ground appears to be the most uniformly distributed of
any result in Fig. 4. For the ED-PRE algorithm [Fig.
4(c)] the noise pattern demonstrates good features of
both: of ED in that the noise is most pronounced in the
corners of the image, but of MD-PRE in that the noise is
more uniformly distributed over the corner regions than
with ED. Thus ED-PRE appears to randomize the noise
background, which reduces the noise peaks.

The background noise can be compared quantitatively
in terms of SPR and SNR. Results for various encodings
are presented in Fig. 5 and Table 1. Figure 5 presents
both SPR and SPR,, (see Section 3) for ED, MD-PRE,
and ED-PRE. For the ED design SPR,, is maximum for
y= 1. For MD-PRE at y = 1 (i.e., the PRE algorithm)
SPR,, is lower than for the ED design. However for
v = 1.4, SPR,, for MD-PRE is larger than for any ED
design. The ED-PRE design results in an even larger
value of this fidelity metric. For the full NRB the largest
values of the SPR metric for ED-PRE and MD-PRE are

Table 1. Best Encoding Performance for the
On-Axis Function

Encoding

Method X v 7% SPR SNR NU%)

Maximum SPR Design
ED-PRE 0.6 13 72 53 784 3.3

ED — 15 91 12 2660 10.2
MD-PRE — 14 76 47 1000 5.8
Minimum NU Design
ED-PRE 09 11 53 17 350 1.6
ED — 12 58 4 421 5.2
MD-PRE — 13 70 41 727 5.5
MDE® — o« 96 17 5220 19.1
PREP — 10 44 24 258 7.9

2For MDE y is not an adjustable parameter.
5PRE has both best SPR and NU for y equal to unity.

essentially identical to those for SPR,,. In fact the en-
tire SPR curve for MD-PRE is identical to the SPR,,
curve. This is due to the presence of MDE-type sidelobes
[e.g., in Fig. 8(b)] that are at the level of the random back-
ground noise. The SPR of the ED design is severely re-
duced (to a level even less than for MDE) by the inclusion
of the noise peaks in the corner of the diffraction pattern.
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Therefore the blended algorithms provide a way to reduce
peak noise over the full NRB by distributing the noise
more uniformly.

The other key fidelity metric is NU. Table 1 shows
that the ED-PRE design having the highest SPR also has
a lower value of NU than does ED, MDE, or MD-PRE.
Thus it outperforms the MD-PRE design in both SPR and
NU despite having a somewhat lower SNR and diffraction
efficiency 7.

Table 1 also reports the performance of designs that
produce the lowest overall value of NU. The ED-PRE al-
gorithm produces an exceptionally low value of NU; how-
ever, SPR is now even lower than for MDE, and #is much
lower than for the maximum SPR design. For the
minimum-NU MD-PRE design yis lower only by 0.1 than

60

Fig. 5. Performance curves of the various encoding algorithms
as a function of y for the on-axis test function.”® For ED-PRE
the specific curve shown for NU is for x = 0.9, for SPR is for
x = 0.6, and for SPR,, is for y = 0.7. These curves achieve the
best performance for ED-PRE as reported in Table 1.

10

Fig. 6. Sensitivity of fidelity metrics of ED-PRE to the free pa-
rameter x e [0.5, 1] for the on-axis test function.
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Fig. 7. Statistical variations of the fidelity metrics of (a) ED-
PRE and (b) MD-PRE for an ensemble of encodings of the on-
axis function. Shaded regions are bounded by the maximum
and minimum values found for 21 random trials of each encoding
algorithm. The respective curves from Fig. 5 are reproduced for
comparison.

50
40

& 301,

P 20

n (%)

wwssnne MD-PRE
® MD

1 15 2.0 25

Fig. 8. Performance curves of the various encoding algorithms
as a function of y for the off-axis test function. For ED-PRE the
specific curve shown for NU is for x = 0.7, for SPRis for x = 1,
and for SPR,, is for y = 0.6. These curves achieve the best per-
formance for ED-PRE as reported in Table 2.

v for the maximum SPR design, and all the performance
differences between the two designs as measured by the
metrics in Table 1 are only slight. The NU and SPR
curves in Fig. 5 also suggest that MD-PRE is less sensi-
tive to y than is ED-PRE.

The results shown for ED-PRE in Fig. 5 are for
the value of y that produces either the highest value
of SPR or the lowest value of NU. Figure 6 shows the
range of variation of these performance metrics for values
of ¥ € [0.5, 1]. The value of y appears to have the great-
est effect on NU, and the sensitivity decreases with in-
creasing y.
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Figure 7 shows the range of variation of SPR and NU
for an ensemble of the 21 random sequences of 5;;. The
variation of ED-PRE is for the same values of x as re-
ported in Table 1. The ED-PRE curves from Fig. 5 are
replotted for comparison. Whereas Fig. 5 and Table 1 re-
port that ED-PRE produces higher SPR than MD-PRE,

Fig. 9. Sensitivity of fidelity metrics of ED-PRE to the free pa-
rameter y € [0.5,1] for the off-axis test function.

Fig. 10. Statistical variations of the fidelity metrics of (a) ED-
PRE and (b) MD-PRE for an ensemble of encodings of the off-
axis test function. Shaded regions are bounded by the maxi-
murm and minimum values found for 21 random trials of each
encoding algorithm. The respective curves from Fig. 8 are re-
produced for comparison.

Table 2. Best Encoding Performance for the

Off-Axis Function
Encoding
Method X y 7% SPR SNR NU(%)

Maximum SPR Design

ED-PRE 1.0 1.3 66 39 621 9

ED — 1.5 59 8 2360 16.5

MD-PRE — 14 76 47 1000 5.8
Minimum NU Design

ED-PRE 0.7 1.1 52 18 340 4.5

ED —_ 1.3 80 5 772 10.2

MD-PRE* — 13 70 41 727 5.5

SMDE, PRE, and MD-PRE have identical performance for either off-
axis or on-axis function. See Table 1 for MDE and PRE performance.
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Fig. 7 shows for the ensemble that MD-PRE can produce
a slightly higher value of SPR. A much larger ensemble
is needed for us to be able to say whether MD-PRE out-
performs ED-PRE in SPR on average and how fre-
quently. Figure 7 also shows that ED-PRE can have
substantially lower NU than MD-PRE and that NU for
ED-PRE is much less sensitive to statistical variation
than is MD-PRE.

B. Comparisons of Off-Axis Designs

Figures 4(d)-4(f), Figs. 8-10, and Table 2 present the re-
sults for the off-axis design. These follow the same for-
mat as do Figs. 4(a)-4(c), Figs. 5-7, and Table 1. Figures
4(d), 4(e), and 4(f) presents the intensity diffraction pat-
terns for ED, MD-PRE, and ED-PRE, respectively. The
background noise pattern for each encoding method dem-
onstrates textures (i.e., spiky for ED, white diffuse for
MD-PRE, and colored diffuse for ED-PRE) similar to
those shown in Figures 4(a)-4(c) for the on-axis design.
Figure 8 and Table 2 compare the performance of the
three algorithms. The major differences between the
performance of the on-axis and the off-axis designs are
that for the off-axis design (1) ED-PRE now clearly pro-
duces a much larger value maximum value of SPR,, than
does MD-PRE; however, MD-PRE produces a much
larger value of SPR than does ED-PRE; and (2) the mini-
mum value of NU produced by ED-PRE is larger and is
only slightly lower than the value of NU for MD-PRE. A
major similarity is that the performance of off-axis and
on-axis designs is nearly identical for MDE and MD-
PRE. The only difference is in some values of SPR,, for
MD-PRE. This is probably because in the off-axis design
some of the MDE-type sidelobes lie outside the reduced-
bandwidth region (which is the same area as was used for
evaluating the on-axis designs).

These results point out one advantage of MD-PRE over
ED-PRE: MD-PRE is less sensitive to where the de-
sired pattern is centered. Certainly, other error diffusion
kernels could be designed to center the noise reconstruc-
tion around the desired reconstruction. However this
would further complicate the design process. Also, if the
desired pattern is distributed over the full NRB, there
may be no practical way to select ED weighting coeffi-
cients that spatially separate noise from the desired pat-
tern. ED-PRE may provide little improvement in these
cases.

For the sensitivity analyses (Fig. 9) it is found that NU
and SPR for ED-PRE are both somewhat more sensitive
to x for the off-axis designs (Fig. 9) than for the on-axis
designs (Fig. 6). In the statistical comparisons of ED-
PRE with MD-PRE for the off-axis design, Fig. 10 shows
that MD-PRE (for y = 1.4) will almost always have a
higher SPR than ED-PRE, while NU for MD-PRE is, at
worst, only slightly higher than for ED-PRE. Slight dif-
ferences between MD-PRE for on-axis and off-axis cases
occurred because the ensemble of 21 random sequences
used for calculating the curves in Fig. 7 was different
from that used in Fig. 10.

5. CONCLUSIONS

We have introduced a new type of single-pixel encoding
algorithm ED-PRE and have compared its performance
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with that of existing algorithms. The design criteria of
principle concern, NU and SPR, emphasize fidelity rather
than energy efficiency. Low SPR is sought for the entire
NRB so that successive designs can address and utilize
the entire SBWP available to the SLM. Depending on
the specific test function encoded, the blended ED-PRE
algorithm performs nearly as well as and sometimes bet-
ter than the MD-PRE, and these blended algorithms
substantially outperform the nonblended MDE, PRE,
and ED algorithms. Even when the test function is
centered and the performance metrics are calculated
over a reduced-bandwidth window (which was the
original intended application of the ED algorithm used
here), the ED-PRE algorithm produces better
performance than ED alone. Apparently ED-PRE
uses the properties of ED to filter the background
noise and distribute it nonuniformly over the
diffraction plane, and it uses the properties of PRE to
diffuse and reduce the peak intensity of the ED noise
spikes.

In this paper we have also delineated the differences
between the properties of ED and PRE. As a final
distinction we note that both methods use diffusion,
but it is used in different ways. In PRE the en-
coding error is scattered or diffused over the entire
diffraction plane, forming a laser speckle pattern.
In ED the encoding errors from one pixel are diffused
forward into neighboring pixels in the modulation
plane. The resulting noise background for ED is spiky
rather than diffuse or speckled. One might choose to
model the error sequence from ED as a stochastic
process.?’ This is valid only to the extent that the se-
quence is described as a random process. However, for
PRE the error sequence is a random process to the extent
that a random-number generator represents a random
process.

Although we have presented encoding algorithms spe-
cifically designed for continuous phase-only SLM’s, it
should be clear that ED-PRE can also be developed both
for quantized and for coupled modulation characteristics
by blending the approaches presented in Refs. 5, 8, 17.
We would expect the background noise to have an appear-
ance and the performance metrics to show dependencies
on the free parameters y and y similar to those observed
for phase-only modulation. However, it would be inter-
esting to find out whether the relative performance differ-
ences between ED, ED-PRE, and MD-PRE are main-
tained for different modulation characteristics. We have
no reason to suspect that this either might or might not
be the case.

In summary, ED-PRE can improve on the fidelity of
ED alone. We suspect that ED-PRE (as illustrated by
the two examples presented here) is competitive with
MD-PRE and that in some cases it may even outperform
MD-PRE.
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rics for values of y = 1,1.1,1.2,.... This results in ad-
equately smooth and sampled curves except in one case.
For the SPR,, curve of ED-PRE in Fig. 5, finer sampling
led to a significant increase in SPR,,, from 53 at y = 1.2
and 1.3 to 60 at y = 1.26. This additional point is included
in the plot in Fig. 5. We also checked the maxima of other
SPR and SPR,, performance curves, using finer sampling
increments. However, since the change in appearance is
minimal and the maximum values of the curves would
change by no more than a few tenths, these additional find-
ings are omitted.
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Liquid-crystal light valves can have intensity-dependent resolution. We find for a nematic liquid-crystal light
valve that this effect is well modeled as a phase that has been blurred by a linear space-invariant filter. The
phase point-spread function is measured and is used in simulations to demonstrate that it introduces inter-
modulation products to the diffraction patterns of computer-generated Fourier transform holograms. Also,
the influence of phase blurring on a pseudorandom-encoding algorithm is evaluated in closed form. This
analysis applied to a spot array generator design indicates that nonlinear effects are negligible only if the di-
ameter of the point-spread function is a small fraction of the pixel spacing. © 2000 Optical Society of America
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1. INTRODUCTION

Loss of spatial resolution in a linear space-invariant im-
aging system is determined by the convolution of the in-
put image with the point spread function (PSF) of the sys-
tem. That is, the PSF blurs the input image. Many
spatial light modulators (SLM) also can be viewed as lin-
ear space-invariant systems that convert an input image
into an output image. Image blurring from this transfor-
mation can also be ascribed to a device PSF (sometimes
referred to as an influence function).

For liquid-crystal light valves (LCLV), resolution has
been reported to depend on the input intensity.)* For
instance, we recently studied a LCLV that was quoted as
having 40 line pairs/mm resolution for low illumination
levels and 4 line pairs/mm for high illumination levels.?
Thus a simple convolution model of resolution loss is not
appropriate for LCLV’s used as intensity displays. How-
ever, a convolution relationship appears to exist between
input intensity images and output phase images. Spe-
cifically, in this paper we measure the phase PSF and find
that, except for a scale factor, it is independent of the in-
put intensity. Therefore phase blurring in LCLV’s can be
modeled by linear space-invariant filtering of the phase.
The reason for the apparent loss in output resolution as a
function of input intensity in Refs. 1-5 is not due to a loss
in input phase ( ¢) resolution but rather to the nonlinear
transformation from phase to the resulting complex-
valued modulation [exp(j#)].

In this study we specifically consider the nonlinear ef-
fects of phase blurring on phase-only LCLV’s used to pro-
duce optical Fourier transforms. It is important to rec-
ognize that even if there is no phase blurring, the
nonlinear transform ¢ — exp(j¢) is inherent in the de-
sign of phase-only computer-generated holograms. Vari-
ous encoding techniques have been developed for which
the Fourier transform of exp(j¢) approximates the Fou-
rier transform of a desired fully complex modulation
a, = a, exp(j).%” One such encoding method, pseudo-
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random encoding,>®-! (PRE), approximates the desired
modulation in an average sense (which is reviewed in
Subsection 4.A). Here we note that this approximate
mapping from the desired signal a, to the encoded phase-
only signal exp(j¢) can be viewed as a linear (or more
precisely, a quasi-linear) space-invariant system. In this
way encoding approximately linearizes a nonlinear sys-
tem.

This quasi-linear relationship found for encoding algo-
rithms can be destroyed by phase blurring. The simplest
model necessary to show that phase blurring is a nonlin-
ear effect is to convolve the phase ¢(x) that is a function
of spatial coordinate x with the single-lag filter function
(or phase PSF)

h(z)=(1 - a)d(x) + ad(x — A), @))

where §(x) is the Dirac delta function, A is a spatial off-
set, and ais a weighting coefficient between 0 and 1. The
frequency response of the blurred phase is the frequency
response of the phase multiplied by the frequency re-
sponse of the PSF. However, the complex-valued modu-
lation becomes

expljd(x)*h(x)] = expljp(x)]
X exp{jal ¢(x — A) — é(x)]}, (2)

and its Fourier transform contains the encoded spectrum
of exp(j¢) convolved, rather than multiplied, by the spec-
trum of exp{ja[ ¢(x — A)—¢(x)]}. This additional term
is responsible for errors in the intensities of the desired
Fraunhofer diffraction pattern at the design frequencies
and for noticeable unwanted diffraction orders at the
other frequencies. Therefore phase blurring introduces
nonlinear effects into the complex-valued modulation and
the resulting Fraunhofer diffraction pattern. In Sections
4 and 5 we will use the single-lag blur model of Eq. (1) in
modeling and experimental demonstrations of the blur-
ring effect. This model is especially well suited for ex-

© 2000 Optical Society of America
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perimental implementation of blurring with a pixelated,
electrically addressed SLM that is reported in Section 5.

Phase blurring also bears some resemblance to the
problem of phase scaling errors in computer-generated
holograms (CGH’s). This can be seen by rewriting Eq. (2)
as

explj(x)*h(x)] = exp[j(1 — a)d(x)lexp[jad(x — A)].

3
The term exp[j(1 — a)¢(x)] has scaled phase, which is
known to reduce diffraction efficiency and for off-axis ho-
lograms introduces an on-axis component,”1%13

Unwanted diffraction orders arising from a phase-
blurred LCLV have been experimentally observed for
both PRE and a nonrandom phase-only encoding
algorithm.’ In Ref. 9 and earlier studies, while we were
aware of a spatial-frequency-dependent loss of phase
range, we did not model this as phase blurring, nor did we
consider the related nonlinear effects on the diffraction
pattern.5®° Instead, we attempted to minimize phase
blurring by making the pixel spacing of the discretely
sampled CGH’s large with respect to the maximum phase
slope anticipated. At the time, the major source of errors
between the experimentally measured and the simulated
results was assumed to be various point nonlinearities—
e.g., the inaccurate setting of the mapping between input
intensity and phase, variations in response across the
SLM, and quantized phase levels. However, in this
study we find that even a small amount of blurring can be
quite noticeable. For the spot array generator designs
considered in this paper, we find that the diameter of the
phase PSF needs to be a quite small fraction of the pixel
spacing for the nonlinear effects of blurring to be negli-
gible.

The phase-blurring paradigm provides a unified view of
SLM spatial properties that have been characterized in
terms of spatial-frequency-dependent phase (Fig. 4 of Ref.
8), diffraction efficiency (Refs. 1, 2, 4, 14, and Fig. 5 of Ref.
8), and effective complex amplitude [Fig. 11(b) of Ref. 5].
Phase-blurring models have an added advantage in that
they can be used to model distortion in phase-only holo-
grams that consist of a multitude of spatial frequencies
rather than a single spatial frequency.
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In this paper we demonstrate through a combination of
measurements and simulations that phase-only LCLV’s
are reasonably well described by a space-invariant phase-
blurring model, and we quantify the magnitude of the ef-
fect on Fourier transform holograms designed by PRE.
We also introduce blurring into an electrically addressed
SLM and evaluate the performance as a function of the
degree of blurring. Although phase blurring affects all
encoding algorithms, we focus on PRE because the effects
of phase blurring on PRE can be analyzed in closed form.
Such an expression is derived for the case of single-lag
blurring and is used to evaluate the distortion of the far-
field pattern from a PRE designed spot array generator.
The expression is also used to consider the possibility of
predistorting the phase so as to compensate for blurring.

2. ILLUSTRATION OF THE EFFECTS OF
PHASE BLURRING

The effects of phase blurring on Fourier transform holo-
grams are illustrated in Fig. 1 for the comparison of a spot
array generator that does not suffer from phase blurring
[Fig. 1(a)] with one that does [Fig. 1(b)]. For diffractive
optical elements (DOE’s) that have abrupt transitions be-
tween pixels, blurring should not be an issue. For ex-
ample, Fig. 1(a) shows the far-field intensity pattern (for
an 850-nm illumination source) of an eight-phase-level
transmissive DOE that was designed by a specific blended
PRE algorithm.'%!® The device consists of 300 X 300
square pixels. Each pixel is 13.3 um on a side, and the
sidewalls are essentially vertical except for some ledges
that are due to misalignment errors between successive
mask layers. (The ledges, as measured with an atomic
force microscope are never larger than 0.4 um). The dif-
fractive optic is designed to produce an 8 X 8 array of
equally spaced spots off axis. One unit spacing to the
right and one unit below the spot array is a faint spot lo-
cated on the optical axis. Additional features are the
sidelobes between the spots. These are due to the small
number of repetitions (4 X 4) of the 75 X 75 pixel unit cell
in the spot array design function. Finally, there is a
background pattern of speckle that is an essential byprod-
uct of the PRE algorithm. There are no other noticeable

Fig. 1. Far-field diffraction patterns from (a) a DOE, (b) a LCLV, and (c) a simulation of (b) that includes a linear shift-invariant phase-
blurring model. Maximum white in the gray-scale images correspond in (a) and (c) to 30% and in (b) to 20% of the average of the peak

intensities of the spots in the desired spot array.
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Table 1. Performance of PRE Implemented on a

DOE
Metric Theory Experiment
SNR 916 942
SPR 35 52
NU® (%) 8.2 8.3
7 (%) 38 41

2The experimental result for NU is the average for seven devices mea-
sured with the procedure described in Ref. 16. The standard deviation of
NU is 0.8%.

Table 2. Performance of PRE Implemented on a

LCLV
Simulated Experi- Prefiltering
Ideal Phase mental and
Metric (No Blurring) Blurring Results  Blurring

SNR 254 148 73 340
SPR 17 3 1.9 18
NU (%) 10 27 33 18
7 (%) 43 31 — 49
E,/E, (%) 0 59 — 2
E_;IE, (%) 0 15 36 0

features between the optical axis and the (1,1) grating or-
der (corresponding to the spatial frequency that is the re-
ciprocal of the pixel pitch).

Figure 1(b) shows a 7 X 7 spot array from a Hughes
LCLV (nematic, parallel aligned). The modulation pat-
tern consists of a 128 X 128 pixel image designed by PRE.
The modulation values are identical to those reported
in Ref. 9. The modulation is generated by projecting a
gray-scale image from a red phosphor CRT onto the write
side of the LCLV. The CRT is driven by the signal
from a computer video display card set to a resolution of
800 X 600 pixels and a frequency of 56 Hz. A subimage
of 384 X 384 video pixels is imaged into a 19.2-mm
X 19.2-mm area of the LCLV. Each modulation pixel
corresponds to 3 X 3 video pixels or 150 um X 150 pm.
The modulation pattern is read out in phase-only mode by
reflecting a linearly polarized 488-nm laser beam off the
read side of the SLM. Additional information on the op-
tical setup and the LCLV characteristics are described in
Refs. 5 and 9.

Many of the same features as in Fig. 1(a) are seen in
Fig. 1(b). Note that the pattern in Fig. 1(b) has a higher
level of background speckle than that in Fig. 1(a), but this
is due to the smaller number of pixels in the PRE design.
The main differences between the two patterns are that
in Fig. 1(b) there are a relatively intense on-axis spot, a
faint mirror image, and an additional pattern of spots to
the right and below the mirror image. If the spot array is
designed centered on axis, these patterns are coincident,
and if the spot array is further off axis, the patterns can
be separated into nonoverlapping diffraction orders
(which is discussed further in Subsection 5.D).

The simulated performance of the 8 X 8 spot array in
Table 1 and of the 7 X 7 spot array in the first column of
Table 2 are somewhat comparable in terms of diffraction
efficiency (7), signal-to-noise ratio (SNR), signal-to-peak-
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noise ratio (SPR) and nonuniformity (NU). (See Appen-
dix A for a review and definition of these metrics.) In
Table 1 the experimentally measured performance of the
glass diffractive optic is comparable to the simulated per-
formance. However, in Table 2 the measured perfor-
mance is substantially different and degraded for the de-
sign that is implemented on the LCLV. The performance
change appears to be due in large part to the phase PSF
of the LCLYV, as is considered in the next section.

3. EVALUATION OF PHASE BLURRING
AND ITS INFLUENCE ON PERFORMANCE

We evaluated the effect of the phase PSF by convolving
the experimentally measured PSF with the desired
phase. We first measure the PSF by focusing a He—-Ne
laser beam onto the write side of the LCLV device using a
6X microscope objective. The waist diameter of the
Gaussian beam is 11.1 um full width at halfmaximum
(FWHM, or 32 um at the e 2 intensity level). The LCLV
pattern is read out as in Section 2 with a 488-nm wave-
length. The beam is interfered with a reference wave
front in a Michelson interferometer. The interferogram
is recorded on a CCD camera for various write beam pow-
ers between 1.3 and 6.8 uW, corresponding to peak phase
shifts between 0.37 and 2%. The phase profile for each
image is calculated by point-by-point conversion from the
intensity to phase. For each resulting image the phase
profile is approximately a circular Gaussian with a diam-
eter of 54 um FWHM. (For comparison, the interfero-
gram intensity pattern has a diameter of 72 ym FWHM
when the peak phase shift is 7.) The unchanging shape
of the phase profile indicates that the phase profile corre-
sponds to the phase PSF and that phase blurring for the
LCLYV is reasonably modeled by linear space-invariant fil-
tering.

We also verified that the divergence of the write beam
through the photodetecting layer of the LCLV does not
significantly contribute to blurring. This was demon-
strated by observing that the interferogram remains un-
changed when the waist position is translated several
millimeters along the optical axis. [Note that the theo-
retical depth of focus (range over which the waist expands
less than a factor of 1.41X) is 2.54 mm.] These results
show that the width of the phase PSF is nearly that of the
150-um modulation pixels used for the experiments in
Section 2.

While these experiments demonstrate the presence of
phase blurring of the LCLV, they do not include the addi-
tional sources of resolution loss from the video card, the
CRT, and the imaging system that are part of the com-
plete SLM system described in Section 2. For this reason
the phase PSF also is measured for the entire system
with a single video pixel used as our closest approxima-
tion to a point source. The geometric image of this pixel
(based on a 1.9X demagnification between the CRT and
the LCLV) would be 50 um X 50 um. The resulting
phase image is once again observed to be approximately
circular Gaussian but with a somewhat larger diameter of
59.4 yum FWHM. In our computer simulations we use
this phase pattern as an approximation of the phase PSF
of the SLM system.
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The effect of blurring is evaluated by convolving the
measured PSF with the desired phase modulation and
then Fourier transforming the blurred modulation. This
is done by digital simulation in which the PSF and the de-
signed modulation are sampled every 37.5 um in the x
and y directions corresponding to a sample spacing that is
one fourth the modulation pixel spacing A = 150 um. A7
X 7 array of samples is used to represent the phase PSF.
Sample values outside the 7 X 7 array are rather small
and are treated as zero in the simulations. Note that the
sample values are normalized so that they add up to unity
and thus reproduce the desired phase when convolved
with a constant phase image. The complex modulation is
calculated from the resulting blurred phase. This is zero
padded to produce 2048 X 2048 sample points, and then
the simulated diffraction pattern is calculated with the
fast Fourier transform (FFT).

This procedure was used to model the experimental re-
sults that are shown in Fig. 1(b). Using the same de-
signed modulation in the simulation procedure gives the
diffraction pattern of Fig. 1(c). The location and relative
strengths of the unwanted diffraction orders appear to
the eye to be quite similar. The major disagreement is
that the actual on-axis spot is much brighter than the
simulated spot. This is due to reflections from the cover
glass of the LCLV, which is not incorporated into the
models. The second and third columns of Table 2 com-
pare three performance measures of the simulated and
measured spot arrays. For each measure the experimen-
tal performance is lower than for the simulated perfor-
mance. However, these values compare much more
closely than they do with the values for the spot array
that is unaffected by blurring (first column of Table 2).
We have repeated these comparisons for a number of de-
signs and encoding algorithms, and we observe similar
trends in each case. Thus we believe that these results
indicate that blurring is a major contributor to the loss of
performance.

To gain additional information on the effect of phase
blurring, we repeated the simulations with PSF’s of vari-
ous diameters between 6 and 90 um. The same mea-
sured PSF as above is used except that it is resampled
and scaled to the corresponding diameter. The sample
spacing (for both the PSF and modulation) is also reduced
from one fourth to one eighth of the modulation pixel
spacing A to permit adequate sampling of the smaller-
diameter PSF’s. For reasons of numerical efficiency the
PSF kernel is limited to an 11 X 11 array of samples.
For scalings of the PSF to large diameters the truncation
of the tails of the PSF will lead to an underestimation of
the effects of blurring, and for very large diameters the
curves eventually flatten out as a result of the truncated
PSF approaching a rect function. Even for Apgp/A

= 0.396 the spatial extent of the kernel is somewhat
shorter than the kernel used for the simulated results in
Table 2. This leads to NU and E/E, being somewhat
smaller in Fig. 2 than in Table 2. However, the discus-
sion of the Fig. 2 results will focus on the smaller values
of Apgp/A for which the truncation effect is even less sig-
nificant.

Figure 2 summarizes the results of these simulations
for two performance measures: The relative energy in
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Fig. 2. Simulated effect of phase blurring on performance for
phase PSF’s of various diameters. The vertical bars indicate the
value of Apgp/A corresponding to the phase PSF measured for
the actual LCLV. The dotted lines indicate the performance
values for Apgr/A = 0.15.

the on-axis spot relative to the resulting spot array
(Eo/E) and NU of the spot array. These are plotted as
a function of PSF diameter relative to pixel spacing
(Apgr/A). The top plot in Fig. 2 shows that an increas-
ing fraction of the energy appears in the on-axis spot with
increased blurring. For a relative PSF diameter of only
15%, the energy in the on-axis spot is 10% of the energy in
the spot array, or, equivalently, ~5X brighter than the
average spot in the 49-spot array. The bottom plot in
Fig. 2 shows that the spot array intensities become less
uniform with increasing blur diameter. For a relative
PSF diameter of 15%, NU has increased by 20% relative
to NU for the ideal design. Even for this small degree of
blurring, the changes to this design are quite significant.
From these results we conclude that the spot array gen-
erator is surprisingly sensitive to a relatively small
amount of blurring.

4. ANALYSIS OF PHASE BLURRING ON
PSEUDORANDOM ENCODING

The results of Section 3 indicate that phase blurring can
introduce undesirable and noticeable nonlinear effects.
PRE algorithms,®%!! which approximate linear mappings
between the desired complex modulation values and the
modulation values that the SLM can actually produce,
are subject to these nonlinear effects. The influence of a
two-pixel (nearest-neighbor) blurring model on an encod-
ing algorithm is analyzed in this section. In Section 5
this class of phase PSF’s is implemented and experimen-
tally studied with an electrically addressed SLM for
which blurring is negligible. This permits a comparison
of measured and simulated diffraction patterns for vari-
ous degrees of blurring.

A. Derivation and Analysis of the Pseudorandom-
Encoding Algorithm

The derivation of the blurring-induced distortion follows
from the definitions and properties of PRE, which we re-
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view. PRE algorithms for modulation-range-limited
SLM’s encode the desired complex modulation a,; at the
ith SLM pizel in the average sense,

a, = f ap;(a)/da = (a);, €Y

where p;(a) is the probability density function (PDF) of
the SLM modulation a that is a random variable and
( - ) is defined as the ensemble-average operator. The
encoding algorithm is designed by finding a PDF that sat-
isfies the integral equation Eq. (4). For phase-only
SLM’s for which a; = exp(j¢;), Eq. (4) simplifies to

a, = fexp(j¢)pi( ¢)dé = (exp(¢));. ®)

This can be satisfied by a variety of PDF’s as long as the
magnitude of the desired complex modulation a,; is less
than unity.®

A PRE algorithm that is amenable to analysis of phase
blurring is based on the binary-phase random variable

& [¢i~v,~/2, 0$8i<1/2

U + v,/2, 12<s;<1’ ©)

where ¢; = arg(a ;) is the phase of the desired complex
modulation, »;/2 is a random binary-phase offset, and s; is
a uniform random variable between 0 and 1. The PDF
for the phase random variable in Eq. (6) is then written as

pi(#) = {80 ¢ — (¥ — vi/2)] + 8[ 6 — (¢ + w2},
¢))

where 8(¢) is the Dirac delta function. Evaluating the

expected complex value of Eq. (5) with Eq. (7) gives

(a); = cos(v;/2)exp(j¥;). ®
If the value of phase offset is set to
v;/2 = arccos(|a,;|), 9)

then the result sought for Eq. (4), a,; = (a);, is obtained.
This result leads to an encoding formula in which the
magnitude of the random phase offset is set by using Eq.
(9); and then, with use of Eq. (6), the sign of the phase off-
set is randomly selected according to the value of the ran-
dom number s;. The offset is added to the desired en-
coded phase i; = arg(a,;) to produce the encoded phase
@;. This process is repeated for each pixel of the N pixels
of the SLM.

The resulting far-field diffraction pattern of the com-
plex field is proportional to

N
A(f,) = El a; exp(—j2miAfy), (10)

which is the Fourier transform of an array of equally
spaced point sources of pitch A. (For purposes of expla-
nation, the modulation is described in only one dimension
and the pixel apertures are considered to be infinitesimal
in width.) The expected value of Eq. (10) gives the de-
sired complex diffraction pattern,

N

A(f) = (A(f,)) = 21 a,; exp(—j2miAf,), (11)
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where A ;(f,) is the Fourier transform of the desired
modulation. The far-field diffraction pattern of the en-
coded modulation is known to produce a noise-perturbed
approximation to the diffraction pattern that would result
from the desired complex-valued modulation a,;.'* The
presence of background noise is indicated in the expected
intensity pattern:

N N
(A2 = 21 k21 (a;af)exp[—j2w(i — k)AS,]

N
= [A(fI2 + 2 (1 - |ag?). 12)
i=1

The second equality identifies the desired power spectrum
and an additional white background noise. This result
follows for the specific condition that a; is statistically in-
dependent of a; for i # k. (Independence is imposed in
the design of PRE algorithms to simplify their derivation
and implementation. In fact, blurring introduces statis-
tical dependence between the values of neighboring pix-
els, which complicates the expected intensity, as will be
shown in Subsection 4.B.) In the first equality, if the
terms (|a;|?) = 1 were replaced with [(a;)? = |a,;|?, then
Eq. (12) would equal |A.(f,)|>. This factorization has
been performed to produce the second equality.

The single summation term in Eq. (12) corresponds to
the average intensity level of white background noise in
the diffraction pattern. The noise is observed in experi-
ments and simulations to be a speckle pattern.®1! The
intensity of the noise pattern depends on the intensity of
the desired modulation values a,;. The closer the values
are to unity magnitude, the lower is the intensity of the
noise pattern. This can be viewed as measuring the dis-
similarity between the desired modulation and the modu-
lation achievable with the particular SLM. For this rea-
son we often refer to this term as the error signal.

The expectation of the squared intensity provides addi-
tional information: specifically, the statistical variations
of the pattern. The expression is derived in Ref. 11.
Analyses of this higher-order moment show that the mag-
nitude of the error signal is closely related to the devia-
tions between the desired and the resulting diffraction
patterns.

B. Effect of Blurring on the Encoding Algorithm

The effect of blurring on the PRE algorithm of Subsection
4.A is derived under the assumption that the encoded
phase ¢; is blurred by a discrete version of the blurring
function of Eq. (1). The two-pixel influence function is
chosen because (1) it is the simplest blurring function to
evaluate theoretically, (2) it can be directly implemented
with an available electrically addressed SLM, and (3) it
introduces the basic nonlinear effects that would be pro-
duced by a more extended blurring function. Repeating
the analysis of Subsection 4.A for a two-pixel blur func-
tion evaluates to an effective complex amplitude of
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b; = (exp{j[(1 — @)¢; + a¢;_{1})
= (exp[j(1 — @) ¢;]{exp(jad;-1))
= cos[(1 — a)v;/2]cos(av;_1/2)

x exp{jl(1 — &)y + a1} (13)

The second equality follows from the statistical indepen-
dence of the random variables ¢;. Equation (13) reflects
the distortion introduced into Eq. (8) by blurring. The
desired phase ¢; from Eq. (8) is filtered by Eq. (1) in Eq.
(13). Also, the amplitude is distorted. The Fourier
transform [see Eq. (11)] of the sequence in Eq. (13) pro-
duces B(f,), which is the expected complex diffraction
pattern. The expected intensity diffraction pattern due
to blurring is derived following a factorization procedure
similar to that used to derive Eq. (12). In this case sta-
tistical dependencies exist between a; and a; for & = i,
k=i+1and k=i~ 1. Taking these conditions into
account, the expected intensity patterns can be arranged
as

(A1)

N
= |B(f,)|? + 21 (1 - [byf?)

N-1
+2 3 Re({(expli(l - 20)¢iKexpl (1 = isal)

X (exp(jad;—1)) — bl }exp(j2mAf)). (14)

The second summation in Eq. (14) would be identically
zero except for the term

(exp[j(1 — 2a)$;]) # (explj(1 — a)¢;]){exp[—jad:])

that arises when terms (a;a},,) are considered. Evalua-
tion of the expectations in Eq. (14) using the PDF of Eq.
(7) in Eq. (), together with additional trigonometric iden-
tities, leads to

(A1)

N N

= B2+ 2, (1 — [by]?) + 2 Re[E tan[(1 — a)»/2]
=1 i=1

X tan(av;/2)b;b¥,; exp( j27rAfx)]. (15)

Note that Eq. (15) is of the form

(IA(f)I?) = IB(£)|? + C1 + Cy cos(2wAf, + @), (16)

where C; represents the first summation in Eq. (15) and
C, represents the magnitude of the second summation in
Eq. (15). The second summation reduces to a single co-
sine component of phase shift &. Comparing Eq. (16)
with Eq. (12) shows that the desired diffraction pattern
|A(f,)|? is distorted into |B(f,)|?, and the noise back-
ground changes from white to colored. Itis interesting to
note that, similarly to the summation term in Eq. (12),
the white noise term C, indicates the amount of energy
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scattered into the noise background.? This result follows
from the fact that the colored-noise term Cg cos(27Af,
+ @) has a period of 1/A, which is the nonredundant
bandwidth of the diffraction pattern. Thus this term in-
tegrates to zero energy over the bandwidth of any given
diffraction order.

5. EVALUATION OF PERFORMANCE
CHANGES DUE TO PHASE BLURRING OF
PSEUDORANDOM ENCODING

The results and relationships derived in Section 4 are
used to quantify performance changes as a function of the
blurring parameter o. These computer-simulated results
are compared with experimental results found with use of
an electrically addressed SLM. The possibility of using
predistortion to compensate for phase distortion is also
considered in the simulations.

A. Simulation and Measurement of Nearest-Neighbor
Blurring '
The modulation pattern is designed to produce an off-axis
array of 7 X 7 spots. Without blurring the modulation is
identical to the one used with the LCLV in Sections 2 and
3. The modulation consists of 128 X 128 pixels complex
modulation encoded to phase by the PRE method of Sub-
section 4.A. The encoded phase is then blurred along the
diagonal direction so that the blurred phase is (1
— a)¢;; + ad;_1,;-1. The resulting complex modula-
tion pattern is then zero padded to produce a 512 X 512
array of samples. The sample array is then Fourier
transformed by the FFT. A resulting intensity image is
shown in Figs. 3(a) and 3(b) without and with blurring,
respectively. The location of the various spots makes it
qualitatively similar to the simulated image in Fig. 1(c).
Metrics for various degrees of blurring (thick curves) are
presented in Fig. 4. For a = 0.2 there is substantial loss
of performance in NU, and for the other two metrics the
performance is substantially reduced for « as small as 0.1.

The simulated far-field intensity pattern resulting from
this analysis is compared with measured intensity pat-
terns from an electrically addressed SLM that is pro-
grammed to produce the identical blurred phase. The
SLM used is a 128 X 128 pixel nematic liquid-crystal
SLM from Boulder Nonlinear Systems (BNS). Addi-
tional technical specifications and experimental measure-
ments of the device are presented in Ref. 10. One key
property of this SLM is that intensity and interferometric
images of the SLM indicate no noticeable coupling be-
tween nearest-neighbor pixels. Apparently the ground-
ing electrodes between the pixels significantly reduce
fringing fields compared with those found in the LCLV.
As with the LCLV, the on-axis light is usually much
brighter than the spot array. This is due not to blurring
but rather to the relatively large percentage of light that
is reflected from the cover glass of the SLM.

The experimental diffraction patterns produced for no
blurring and for blurring (@ = 0.5) are presented in Figs.
3(d) and 3(e), respectively. Except for the on-axis spot
that is due to reflections from the cover glass, these dif-
fraction patterns are qualitatively similar to the simu-
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Fig. 3. Far-field diffraction patterns resulting from the identical PRE design of a spot array generator: (a) and (d) without phase
blurring, (b) and (e) with phase blurring @ = 0.5, and (c) and (f) with phase blurring of a predistorted phase for « = 0.5. (a) and (b) are
simulated, (c) is the average of ten simulations each using a different random sequence for PRE, (d) and (e) are as measured for the BNS
SLM, and (f) is the expected far-field intensity pattern as calculated with Eq. (15). Maximum white in the gray-scale images corre-
sponds in (a) and (d) to 30%, in (b) and (e) to 50%, and in (c) and () to 1% of the average peak intensity of the desired spot array.

lated patterns in Figs. 3(a) and 3(b). The metrics calcu-
lated from the SLM diffraction patterns are plotted as
dots in Fig. 4. Considering the inaccuracies in program-
ming coherent SLM’s and in measuring coherent optical
patterns, the experimental diffraction patterns produce
performance metrics that are reasonably similar to the
simulated performance metrics. For SPR in Fig. 4 the
discrepancy is quite noticeable for & < 0.06. In this
range the brightest noise spot is due to speckle noise.
However, for larger values of « the peak noise is from
peaks in the first harmonic of the spot array. (The on-
axis spot is omitted from consideration in both experi-
mental and simulated SPR, as discussed further in Ap-
pendix A) The experimental measurements suggest
that speckle noise is higher in practice than for the simu-
lations. The higher speckle noise accounts in part for the
measured values of NU being higher than the simulated
values. Another influence on NU could be multiple co-
herent reflections between the SLM and its cover glass.!’
The magnitude of the discrepancy between NU as mea-
sured and as simulated is in line with previous measure-
ments of NU.1%17  Algo, for small values of « the denomi-
nator term E_; of E,/E _, is dominated by speckle noise.
Thus in this range E,/E _; measures the SNR in the vi-
cinity of the mirror (i.e., the —1) order.

Figure 4 also shows that a slight degree of blurring can
improve individual metrics. This is not unreasonable.

For example, introducing (even a small degree of) phase
blurring into a diffuser is known to convert its far-field in-
tensity statistics from exponentially distributed into a
modified Rician, which is much less likely to produce as
large a maximum-intensity peak as does the exponential.®

B. Simulated Correction of Blurring by Predistortion of
Phase and Limitations

The effect of phase blurring can be compensated by con-
volving the encoded phase modulation ¢; with the inverse
filter ;1. The inverse filter is defined such that convolv-
ing h; with its inverse produces the delta function
(hi*h;! = §)). Therefore it is possible to numerically
compensate the phase by first predistorting phase
(h71*¢;) and then blurring it (h;*h; '*¢; = ¢;). Forthe
discretely sampled SLM with a phase PSF that is a dis-
crete version of Eq. (1), h; = (1 — a)§; + ad;_1, the in-
verse filter is known to be

AL )i ;>0 an
= : = 0.
: 1—-a\l—-a’ :

This filter is stable for @ < 0.5 and marginally stable for a
=0.5. For1 > a > 0.5 the data can be filtered in the re-
verse (anticausal) direction to ensure a numerically stable
solution.’®1? Tt is clear from this discussion that the pre-




Duelli et al.

distorted phase can be exactly compensated by the in-
verse filter in Eq. (17) in a numerical simulation.

However, there is a practical limitation to using predis-
tortion that can be seen by examining Eq. (17). The
problem is that the predistorted phase range can be much
greater than 27. This can be appreciated by convolving
the inverse filter with a step function of height 27. For a
= 0.5 the sequence of predistorted phases is
[47, 0,47, 0,...], and for & = 0.3 the predistorted phase
sequence is [2.87, 1.647, 2.167, 1.947,...]. The predis-
torted phase range is even greater for the PRE-designed 7
X 7 spot array generator. We find that the total phase
range is 967 for @ = 0.5, 7.6 for @ = 0.45, and 5.87 for
= 0.3. Since LCLV’s are limited in phase range to near
27 (for practical reasons) it is likely that they will not be
able to respond to predistorted addressing signals corre-
sponding to phase shifts that are greatly in excess of 27.
Also, modding of the predistorted phase into the 27 range
of the LCLYV is not an acceptable option, and it will not
correctly compensate for phase blurring.

There is also a limitation to using a blur-free, electri-
cally addressed SLM to demonstrate phase compensation
experimentally. Since the phase is both blurred and pre-
distorted in the attached computer, the signal applied to
the SLM is exactly the same signal as would have been
applied to the SLM if there were no phase blurring.

Examination of Eq. (13) suggests that one could apply
the inverse filter to the desired phase y;, which also is
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Fig. 4. Performance of PRE as a function of «, the degree of
phase blurring. Solid curves report the computer-simulated re-
sults for the effect of phase blurring. Dots show the experimen-
tally measured values obtained with the BNS SLM. Thin
curves report the simulated performance if the phase is first pre-
distorted through the inverse filter of Eq. (17). The inset plots
E, /E_, over an extended range that shows the simulated perfor-
mance for phase blurring and for phase blurring of the predis-
torted phase.
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blurred by the single-lag phase PSF. Various simula-
tions indicate that this phase distortion contributes to the
appearance of undesired diffraction orders to a much
greater degree than do the amplitude distortions of Eq.
(13). While both amplitude and phase distortions can be
exactly compensated for by predistorting ¢;, it is inter-
esting to consider to what degree that predistortion of the
desired phase ; reduces the effects of blurring. The re-
sulting far-field patterns are shown in Figs. 3(c) and 3().
The performance in Fig. 4 for predistorted phase (thin
curves) is generally better than for phase that is not pre-
distorted (thick curves). For SPR and NU the perfor-
mance is close to that for the original design (i.e., for a =
0). The metric E,/E _; (inset in Fig. 4) is much larger af-
ter predistortion of the phase. This change is due to the
following: (1) The contribution to E _; from harmonics is
negligible, as can be evaluated from the first term of Eq.
(16). (2) Essentially only the speckle pattern contributes
energy to E_;. (3) The speckle pattern intensity is
weakest in the region of the —1 order, and it is much
weaker than for the case of no predistortion. For ex-
ample, for « = 0.5, C1, and C; in Eq. (16) are of similar
magnitude for the predistorted design, and the —1 order
is located in a region where the cosine term subtracts
from and nearly cancels C;. The cosine variation of the
speckle noise can be seen both for the simulated [Fig. 3(c)]
and for the theoretical [Fig. 3(f)] expected intensity pat-
tern. Specifically, the simulated expectation is the aver-
age of ten realizations of the identical PRE design, each
using a different uncorrelated realization of the random
sequence s;, and the theory is the expectation from Eq.
(15). The average of several realizations makes it easier
to see and compare low-level features with the theory
than does a single realization.

Two interesting results come out of this simulation.
First, the compensation of the desired phase y; in Eq. (13)
results in values of NU and SPR that are close to the val-
ues for no phase blurring. Second, the compensated dif-
fraction patterns appear very similar to the diffraction
pattern without blurring. The main difference is that
the speckle pattern in the compensated diffraction pat-
tern [Figs. 3(c) and 3(f)] has a noticeable sinusoidal com-
ponent (Cy/Cy ~ 0.6, not just for « = 0.5 but for
0.3 < a = 0.5), while the speckle pattern in diffraction
patterns without burring have no sinusoidal component,
as indicated in Eq. (12). This is especially interesting be-
cause the sinusoidal component of speckle for the phase-
blurred modulation in Figs. 3(b) and 3(e) is not apparent
(since C5/C; < 0.01).

Finding an exact inverse filter for a two-dimensional
filter is nontrivial, and some approximation is usually
required.’®1® For the 7 X 7 LCLV phase PSF measured
in Section 8 we computed an approximate inverse by us-
ing the discrete Fourier transform to calculate the two-
dimensional phase spectrum H(f,, f;). The exact in-
verse filter is H™'(f,,f,). However, the function
contains singularities. For this reason, amplitudes in ex-
cess of a threshold value y are set to y so that for |[H™}|
> v, the modified filter is y exp[arg(H™!)]. We used
the modified inverse filter to predistort the phase ¢; of the
spot array generator design. We found through repeated
experiments that a value of y that is 25X larger than the
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minimum value of |H | reduces the effects of blurring on
the performance metrics the most (as reported in the last
column of Table 2). While predistortion of the blurred
phase significantly corrects for blurring, approximations
inherent in the inverse filter method do not completely re-
store the performance to the levels achieved if blurring
were not present. As with the single-lag blurring func-
tion, the predistorted phase range (which is 407) is too
large to experimentally implement. Even for an isolated
27 step the predistorted phase range is 6.97. Further-
more, owing to incomplete compensation, the phase range
of the corrected step increases from 27 to 2.3

These results show that predistortion is numerically
possible but physically quite difficult owing to the limited
phase range of most LCLV’s. These simulations do pro-
vide insight into the effect of blurring. In particular, the
compensation of the desired phase y; provides an ex-
ample of a significant spatial variation of the speckle
noise background. Also, these analyses show that mod-
ding of the phase into a 27 range, which often is taken for
granted in CGH design, is not necessarily possible be-
cause of the nonlinearity inherent in phase blurring.
This limitation is considered further in Subsections 5.C
and 5.D.

C. Evaluation of Blurring on a Linear Phase Ramp

A standard method of evaluating phase distortion is to
consider the effect on a single frequency f,.” This corre-
sponds to a desired phase that is a linear phase ramp or
¢(x) = 27 fox. On the basis of current SLM’s we also
will assume that the phase is modded into a 27 range.
The modded phase is a periodic function of period 1/f,.
For the phase PSF of Eq. (1) the blurred phase over one
period can be written as

ifo=sx<A

if A<x< Ufy
(18)

3 2af(x — aA)fy + a]
) =gz — ad)fy

The blurred phase for Af, = 1/2 and a = 1/3 is plotted in
Fig. 5. It can be seen that blurring reduces the phase
range (thus introducing a dc component) and causes a
phase discontinuity (thus producing higher-frequency
components). The strengths of the desired and undes-
ired diffraction orders are found by evaluating the inte-

gral

Uf
ds = fo fo " expljs(x)lexp(—j2wkfor)dx,  (19)

which are the Fourier series coefficients of the complex
modulation. The intensity of the diffraction orders
evaluates to

|del?
(1 — Afo)? + (Afo)? + 2(Afp)(1 — Afp)eos(27a)
if k=1
|[[2/7(1 — E)]sin[#wAfo(1 — k)]sil‘l(’ﬂ'at)|2
if E#1

(20)
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Thus blurring applied to an ideal blazed grating intro-
duces undesired diffraction orders at frequencies kfy,
k # 1. However, if the linear phase were a continuous
unmodded ramp, then the desired phase and blurred-
phase patterns would both produce a single diffraction or-
der at f;. The spots would be identical in intensity and
differ only by a constant phase shift 27waAfy.

The validity of Eq. (20) was compared with a computer
simulation and experimental implementation with use of
the BNS SLM. A comparison of the results for two val-
ues of @ are summarized in Table 3. For the computer
simulation the Fourier series coefficients are calculated
by taking the FFT of one period of the blurred
modulation.?’ One period in the simulation consists of
4.75A or, equivalently, A fo = 4/19. Equation (20) and
the simulation give nearly identical results, indicating
that Eq. (20) is correct. This phase modulation also is
programmed on the 128 X 128 pixel SLM. The simu-
lated and experimental diffraction patterns are compared
in Table 3. The results are reasonably similar to the
theory in relative strength. This suggests that the SLM
produces a phase modulation that is similar to the mod-
eled phase.

D. Comparison of the Phase-Ramp Model with the
Pseudorandom-Encoding Model of Blurring

In this section we compare the effect of phase blurring on
PRE as modeled in Eq. (15) with a traditional diffraction-
efficiency model based on Eq. (20).

Models of periodic modulation similar to the one in
Subsection 5.C have been widely used to predict the dif-
fraction efficiency of DOE’s. These models are based on
the assumption that the desired diffraction pattern recon-

()21
1

172 a 1-a

0 T 7 > fox
0 12 1
Fig. 5. Illustration of the distortion of a modded phase ramp of
27 range due to the phase PSF of Eq. (1).

Table 3. Diffraction-Order Intensities for a
Modded Phase Ramp That Is Phase Blurred®

Method of
Analysis I—l Io Il 12 I3
« = 0.3
Theory, Eq. (20) 0.106 0.165 1 0.165 0.106
Simulation 0.102 0.162 1 0.148 0.102
Experiment 0.150 —_ 1 0.136 0.212
a=05
Theory, Eq. (20) 0.266 0.414 1 0.414 0.266
Simulation 0.256 0.405 1 0.368 0.253
Experiment 0.134 — 1 0.566 0.380

8For Afp = 4/19. Data are normalized to I;.
phase blurring.

« is the degree of
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Fig. 6. Far-field diffraction patterns resulting from the identical PRE design of a spot array generator: (a) and (d) without phase
blurring, (b) and (e) with phase blurring a = 0.3, and (c) and (f) with phase blurring & = 0.5. (a)-(c) are simulated, and (d)-(f) are as
measured for the BNS SLM. Maximum white in the gray-scale images corresponds to 15% of the peak intensity level of the desired spot

array.

Table 4. Diffraction-Order Intensities That Result
from Phase Blurring of PRE®

Method of
Analysis E—l Eo El E2 E3
x = 0.3
Eq. (20) 0.106 0.165 1 0.165 0.106
Theory, Eq. (15) 0.122 0.200 1 0200 0.144
Simulation 0.127 0.211 1 0202 0.146
Experiment 0.131 _— 1 0.228 0.148
a=05
Eq. (20) 0.266 0414 1 0.414 0.266
Theory, Eq. (15) 0.278 0.455 1 0416 0.305
Simulation 0.285  0.463 1 0.406 0.305
Experiment 0.258 — 1 0.555 0.284

¢For Afy = 4/19. Data are normalized to E;.
phase blurring.

« is the degree of

structs around a specific diffraction order. In this paper
we have been considering the desired order to be the
k =1 order at spatial frequency f;. This center fre-
quency can be viewed as the carrier frequency for the de-
sired signal. In some cases (particularly if the modula-
tion on the carrier has a small bandwidth and the
modulation depth of the carrier is small) the diffraction
efficiency for the modded linear phase ramp [found from

Eq. (20)] should correspond closely to the efficiency for the
signal-modulated carrier. However, for the designs
based on PRE (which ideally do not produce additional
harmonics at kfy, 2 # 1) the bandwidth is greater than
fo and the deviation between the phase ramp and the
PRE phase modulation is frequently as large as = .

To illustrate the differences between the two models we
define a desired function that has a much smaller band-
width. This is achieved by sampling the desired phase
function for the 7 X 7 spot array generator more finely.
The resulting function consists of 2 X 2 rather than
4 X 4 unit cells, and the spacing between the resulting
spots is reduced by a factor of 1/2. A phase ramp is
added to the desired modulation so that the spot array is
centered Af, = 4/19, the same frequency used in Subsec-
tion 5.C. The simulated diffraction pattern calculated
from the 512 X 512 sample FFT of the blurred PRE de-
sign is shown in Figs. 6(a)-6(c). Compared with the pre-
vious design in Figs. 1 and 3, the desired diffraction pat-
tern is much more separated from the harmonic patterns.
However, there is still some overlap between the orders.
Based on the shape of each order a unique and nonover-
lapping window is chosen for performing the integration
of intensity. The window for the 1 and —1 orders is cho-
sen to be a cross-shaped area composed of two rectangles
oriented at right angles to each other in x and y. Each
rectangle is 33 X 65 samples. The window for the 0 and
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3 orders is also a symmetric cross with arms in x and y.
Each rectangle is 17 X 201 samples. The window for
the 2 order is a rectangle that is 83 X 77 samples. Iden-
tical windows are applied to the simulation of the blurred
PRE (i.e., the FFT of encoded modulation) and to the
model [i.e., the expected intensity calculated from Eq.
15)]. The results are compared in Table 4 and are found
to be nearly identical. These results do not compare
quite as closely with the diffraction-order strengths calcu-
lated from Eq. (20). In particular, the intensities for
Eq.(20) are symmetric around £ = 1, whereas the ener-
gies calculated from Eq. (15) are not symmetric.

Perhaps even closer correspondence would be obtained
if it were possible to further increase the carrier fre-
quency and the separation between the orders. How-
ever, Eq. (15) accurately predicts the energy in a given
window despite the overlap. Additionally, unlike Eq.
(20), the simulations [Figs. 6(a)-6(c)] or Eq. (15) provide
detailed intensity patterns around each harmonic fre-
quency. Most of the same features seen in the simula-
tions are also seen in Figs. 6(d)-6(f), which are the corre-
sponding experimental diffraction patterns from the
SLM. The measured values of energy E in Table 4 are
somewhat closer to the theory with use of Eq. (15), with
the greatest discrepancy (~25%) being for E, for a = 0.5.

The model of blurring of PRE [Eq. (15)] appears to pro-
vide additional accuracy compared with the basic linear
model of Eq. (20). The ability of the model to predict the
detailed effects of blurring when the unwanted harmonic
patterns overlap with the desired designs (such as in Fig.
3) is the key advantage of the blurred PRE model.

6. SUMMARY AND CONCLUSIONS

The historical approach of describing the resolution of
LCLV’s as a function of input level may not be the most
appropriate for Fourier transform applications such as
beam steering, pattern generation and matched filtering.
The phase range desirable for these applications is near
27 and over this range the resolution of most LCLV’s
used as display devices changes dramatically. However,
as measured for a specific LCLV, the phase resolution
does not change noticeably, which suggests the suitability
of the space-invariant phase-blurring model. Using the
experimentally measured phase PSF in simulations pro-
duces far-field patterns with distortion products that are
quite similar to those actually measured from the LCLV.
Simulations in which the phase PSF is varied in diameter
show that the blur diameter needs to be a very small frac-
tion of the pixel spacing for the effects of blurring to be
negligible for the 7 X 7 spot array generator design.
Additional experiments are performed with an electri-
cally addressed SLM that has no appreciable coupling be-
tween nearest-neighbor pixels. Filtering of the electrical
address signal is used to experimentally introduce vari-
ous degrees of phase blurring. Performance is dramati-
cally reduced for « = 0.1, which, as with the LCLV experi-
ments, indicates that a small degree of phase blurring can
significantly alter performance. The effects of phase
blurring on PRE designs can be compensated to a large
extent by applying an inverse filter to the phase. How-
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ever, this approach is not practical since it requires that
the SLM have a phase range that greatly exceeds 2.

A Fourier series analysis of a modded phase ramp sub-
jected to phase blurring is performed to provide a clear
example of the nonlinear generation of harmonics that is
due to blurring. However, this result does not accurately
predict the energy found in the diffraction orders of the
PRE-designed spot array. Much more detailed informa-
tion can be found from the closed-form expression Eq. (15)
for the expected far-field intensity pattern. This expres-
sion predicts the distortion of each effective pixel value,
which leads to the generation of undesired harmonics. It
also predicts the expected noise power spectrum, which,
owing to phase blurring, has a nonwhite distribution.
Equation (15) is no more numerically efficient than nu-
merical simulations involving the application of the PRE
algorithm, blurring of the phase encoding, and calculation
of the Fourier transform. However, the recognition that
Eq. (15) is of the form of Eq. (16) provides insight into the
nonlinear effects of phase blurring and a base from which
to develop models of various performance metrics.

APPENDIX A

The definition and method of calculating the performance
metrics used in this paper are collected here for easy ref-
erence. The metrics of signal-to-noise ratio (SNR),
signal-to-peak-noise ratio (SPR), nonuniformity (NU),
and diffraction efficiency (7) are reviewed from earlier
work.?8-10  Additional metrics that are useful for de-
scribing the nonlinear effects of blurring are the intensi-
ties I, and the energies E, of the kth diffraction order
that result from blurring of the desired modulation.

The orders are defined so that 2 = 0 corresponds to
light on the optical axis and £ = 1 corresponds to the de-
sired reconstruction centered at frequency fy. The en-
ergy in a spot array and its harmonic orders is compared
as a ratio. A particular window of integration around
each order is chosen to make a fair comparison between
the values of E;,. The same window is used for compar-
ing experiment, simulation, and theory. We present this
data as a ratio of energies such as E,/E,. For most
measurements reported in all sections except Subsections
5.B and 5.D, we calculate E; so as to minimize energy
contributions from speckle. This is accomplished by
summing the intensities only at the centers of the 49 de-
sired spots. The ratio E_; /E is calculated by summing
the intensities at the same 49 frequencies, appropriately
centered around the frequency —f,. Modified windows
are used to minimize the variability of speckle from the
—1 order and the overlap between harmonics. These
windows are specified in Subsections 5.B and 5.D, respec-
tively.

In this paper the ratio of E; to either E, or E_; is re-
ported to show the production of unwanted orders by blur-
ring. We do not report experimental measurements of
E,/E,, because reflections from the cover glass of both
SLM’s produce bright spots on the optical axis that are
not accounted for in the theory and simulations. Rather
than adjusting the theory to the specific modulators, we
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chose to experimentally measure E,/E_,. For this same
reason we do not report experimentally measured values
of Iy and 7.

The SNR is the average spot intensity (specifically,
E /49 for the 7 X 7 spot array) divided by the average
noise intensity. The noise intensity is calculated from
the two quadrants in the diffraction other than where the
desired diffraction signal and its harmonics appear. The
identical region is used for calculations from the simula-
tions and the experiments. The SPR is the average spot
intensity divided by the most intense noise peak found in
the diffraction pattern. The on-axis spot and the side-
lobes of the spots in the vicinity of the desired spot array
are omitted from this calculation. However, spots from
the harmonic orders are included in the calculation of
SPR. The NU is the standard deviation of the desired
spot intensities relative to the average spot intensity.
The standard deviation and average are calculated from
the peak intensities of the 49 spots located around fj.
The diffraction efficiency values are reported here for pur-
poses of making relative comparisons of energy distribu-
tion between desired and undesired portions of the light
distribution. The value of 7 is calculated in the simula-
tions by summing the energy in a window around the
7 X 7 spot array and dividing by the total energy of the
FFT, which cover only the frequency range of the SLM
grating order 1/A. Energy that appears in adjacent grat-
ing orders, which depends on the pixel aperture, is not
considered in the theory or simulations of the diffraction
patterns. As mentioned above, experimental measure-
ments of diffraction efficiency are not reported because
the presence of the reflection from the cover glass ob-
scures the measurement of /.
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Pseudorandom encoding (PRE) is a statistics-based procedure in which a pure-phase spatial light modulator
(SLM) can yield, on the average, the prescribed diffraction pattern specified by the user. We seek to combine
PRE with the optimization of an aperture-based target function. The target function is a fully complex input
transmittance, unrealizable by a phase-only SLM, that generates a prescribed light intensity. The optimiza-
tion is done to increase the diffraction efficiency of the overall process. We compare three optimization
methods—Monte Carlo simulation, a genetic algorithm, and a gradient search—for maximizing the diffraction
efficiency of a spot-array generator. Calculated solutions are then encoded by PRE, and the resulting diffrac-
tion patterns are computer simulated. Details on the complexity of each procedure are furnished, as well as
comparisons on the quality, such as uniformity of the output spot array. © 2000 Optical Society of America
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1. INTRODUCTION

Pseudorandom encoding (PRE) is a procedure that en-
ables a pure-phase spatial light modulator (SLM) to ap-
proximately produce the same Fraunhofer diffraction in-
tensity that would result from a desired, but unrealizable,
fully complex filter. By a fully complex filter, we mean a
device in which both amplitude and phase can be varied
to produce the desired diffraction pattern.

There is a sizable literature on the design of input gen-
erating functions that achieve prescribed far-field inten-
sities subject to a phase-only (PO) constraint.?5 In-
deed, PRE is only one of many design methods that exist
for this purpose. The iterative Fourier transform algo-
rithm is known to give excellent results* 7% but re-
quires at least two Fourier transforms per iteration in a
procedure that, depending on the complexity of the pre-
scribed diffraction intensity, may extend to hundreds of
iterations. Simulated annealing, another powerful
method, is likely to yield a global optimum in a phase op-
timization problem but is reported to be slow?%2” and thus
may be unsuitable for real-time systems that require
adaptive redesign of the SLM’s modulation pattern.?
For such systems a noniterative encoding algorithm that
requires only a few numerical operations per SLM pixel
would seem to be the preferred choice. PRE is such an
encoding procedure. However, the overall diffraction ef-
ficiency of the process must be reasonably high. If some
sort of optimization is required to incredse the diffraction
efficiency, the additive time component associated with
the optimization algorithm becomes a major factor in
evaluating its efficiency.

For readers not familiar with PRE, we furnish a brief

0740-3232/2000/020285-09$15.00

review in Appendix A. More extensive discussions of
PRE appear in Refs. 23-25. Some examples of design by
the iterative Fourier transform algorithm are given in
Refs. 4-6. Iterative Fourier transform algorithm design
from a vector-space point of view is discussed in Refs. 9
and 10. A tutorial discussion of vector-space methods is
found in Ref. 28. General approaches to diffractive-
optics design are found in Refs. 1 and 2. A discussion of
virtual source arrays is furnished in Refs. 20 and 21.
Various optimation methods useful in diffractive-optics
design can be found in Refs. 20, 22, 26, and 27.

2. DIFFRACTION EFFICIENCY AND
SIGNAL-TO-NOISE RATIO

The diffraction efficiency of interest here is the so-called
input diffraction efficiency 7;,, defined by (for simplicity,
we use only one-dimensional notation)

1 [Le
—f |g(x)|?dx (continuous) (1)
LJ-rp

Min =

2

1 N
N2 8P (disrete) @

where L is the aperture dimension, g(x) is the aperture
function that generates the desired far field G(u), i.e.,
g(x) & G(u), N is the number of discrete cells, and A is
the cell size, i.e., A = L/N.

A PO array of cells can be modeled by the transmit-
tance

© 2000 Optical Society of America
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y x—iA — AR
gilx) = K_El exp[j¢(iA)]rect(—T——-—), 3)
i=

where ¢(iA) is the phase of the ith cell and K is a nor-
malizing constant of no interest at present and is there-
fore set equal to unity. In PRE the phases ¢(iA) are
treated as random variables whose statistics are to be ad-
justed to produce an approximation to the prescribed dif-
fraction pattern. Replacing g,(x) with g,(nA) for conve-
nience, we compute the far-field amplitude, resulting
from the uniform illumination of g,(x), as

N
Gi(u) = A, expljd(nA)lexp(—j2mund)  (4)
n=1

and its expected value as

N
Gi(u) = A, g(nA)exp(—j2wunA), (5)
n=1

where we have used the fact that E{exp[jdrA)]}
= g(nA) for unbiased estimation of g(rA).

The expected value of field fluctuations, a%(u), is given
by

o3u) = |Gy(u)]? - [G1(u)]?
N
=N-2 |grd)|2=N1-17,. ©
n=1

A measure of field variability at spatial frequency u is the
signal-to-noise ratio (SNR), given by

[G1(w)]? [G1(u)]?
SNR, = T " NI )

Clearly, the larger the SNR is, the less is the variability
that one would observe from realization to realization.
Equation (7) provides a powerful incentive for raising the
diffraction intensity in PRE: An increase in 7y, from 20%
to 60% doubles the SNR. We will observe this phenom-
enon in the numerical results.

3. LAW OF LARGE NUMBERS

Consider next an array consisting of 2N cells, each of
width A/2. The aperture size and the energy entering
the system remain the same as those of an N-cell array
with cell width A. In this case the far field is

2N
Gy(u) = O, exp[jd(nA/2)]lexp(—j2nunA/2) (8)

n=1

N
= 3 {expljg((2n - DAR)]

X exp[—j2nu(2n — 1)A/2]
+ expljd(2nA/2)]exp(—j2mu2nA/2)}, 9

and its expected value is
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N
Gy(u) = X, [g((2n — 1)A/2)exp(—j2munA)
n=1

X exp(jmuld) + g(nA)exp(—j27uni)].
(10)

In regions where muA < 1 (the useful operating range),
Go(u) is approximately given by

N
Gy(u) = 2, g((n — 1/2)A)exp(~j2wunA)
n=1

N
+ >, g(nA)exp(—j2munA)
n=1

Likewise, the mean-square value of the noise is
o3(u) = |Go(w)|? — [Ga(w)]?

2N
= 2N - Y |g(nA/R)
n=1

= 20%(u). (12)
Hence
Go(u)]?
SNR, = L—Z(2—] = 2 X SNR,. (13)
ag

2

Thus, for the same input energy, a doubling of the SNR is
achieved by doubling the number of phase cells. Thus
the field variability has been reduced, and it is in this
sense that the law of large numbers works for PRE.

4. OPTIMIZATION OF SPOT ARRAYS

We now consider the problem of optimizing 7;, for the de-
sired fully complex spot-array generator. We first note
that a broad class of input transmittances can be written
as

flx, &)

—_—, (14)
max|f(x, ¢)|

g(x, ¢) =

where g(x, ¢ ) is the generating or target transmittance,
f(x, ¢) is a generating function appropriate for the desig-
nated task, and ¢ is a free, real, vector parameter. We
also note that, regardless of the value of ¢, |g(x, ¢)|
< 1, as befitting a passive device. Under some circum-
stances ¢ can be used to optimize the performance of the
device. For a spot-array generator that furnishes an ar-
ray of far-field spots at, say, {u;, i = 1,..., M}, an appro-
priate generating function is
M

fe,9) = 2 expli@mugs + 4], (15)
where ¢ = (¢y,..., $py..., dp)T. For ¢ = 0, i.e., each
component of ¢ is zero, the 7;, computation yields ap-
proximately 7, = /M. A significant improvement can
be obtained by a judicious choice of ¢. Indeed, inserting
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Eq. (15) in Eq. (14) and using Eq. (1) yield an input dif-
fraction efficiency described approximately by

7 @) = &2($)M, (16)
where

a(¢) = an

1
max|f(x, )|’

Thus, to maximize 7;,, we seek to find ¢* such that

¢* = arg[max o®( ¢)]. (18)
]

Equation (18), in words, says that ¢* is the vector that
will make o?( ¢) as large as possible. Clearly, from Eq.
(186), this will maximize 7;,. However, an analytic solu-
tion to Eq. (18) is not readily apparent. Thus, in the rest
of this paper, we consider approximate solutions to Eq.
(18). In particular, we focus on the three methods de-
scribed below: Monte Carlo simulation, genetic algo-
rithms, and gradient descent.

A. Monte Carlo Simulation

In the Monte Carlo simulation a random-number (RN)
generator is used to generate a new random phase vector
at each trial. This phase vector is then used to evaluate
7. The largest 7, and the corresponding phase vector
are retained. Two experiments were performed: one of
1000 trials and one of 10,000 trials. The phases and the
corresponding diffraction efficiencies are recorded for
both experiments. The results are given in Section 6.

B. Genetic Algorithm

Details of the genetic algorithm (GA) used for optimizing
a 10-spot array are given in Appendix B. Here we fur-
nish only a summary of the parameters used: initial
population size is 25, each member being a 10-component
vector of phases, each represented by a 10-bit binary
string; fitness scaling parameter is 2; fitness function is
7in; initial mutation probability is 0.01; and final muta-
tion probability is 0.005.

C. Gradient Method

A gradient algorithm requires an objective function that
we seek to extremize. Such an objective function can be
constructed by the following reasoning. Recall Eq. (2) for
7in; We wish to make %, as large as possible. Now 7,
= 1 if |g| = a|f| =1 for all x or, equivalently, |f|?
= 1/a? = B. Therefore, more generally, 8 — |f{% is the
error from the optimum at location x, and

N
e(B, ¢) = kEl [B — |f(kA, ¢)212 (19)

is proportional to the total mean square error over all x.
Thus e(8, ¢) > 0 is a suitable objective function that has
to be minimized over 8 and ¢. To find B and ¢ that
would minimize the objective function, we use the itera-
tive gradient formula:

(B, ®)r+1 = (B, ¢ — ¥YVe(B, ¢), (20)

where
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de de de )T

Ve(B, ¢) = (————---—
B ipy by

k is the iteration number, y is a constant step size, and

the gradient Ve(B, ¢) is evaluated at (8, ¢),. The ini-

tial starting vector (8, ¢ ), is chosen by using a RN gen-

erator to supply values for the components.

5. COMPUTATIONAL EFFICIENCY:
COMPARISON

It is of interest to consider how the different optimization
routines compare vis-a-vis the amount of computation.
In this section we furnish an analysis of the relative com-
putational efforts involved in each of the three optimiza-
tion algorithms for a 10-spot array.

A. Monte Carlo Search

Let T4 denote the time that it takes to draw 10 random
phases and T, the time needed to find the maximum
value of the generating function f(x, #). For each phase
vector ¢, we need to compute the diffraction efficiency in
Eq. (2). Let T, denote the time to compute 7;,. Then
the approximate computation time per cycle is

Ty+ Tpax + T

Pin’

and for C cycles the total time would be
MO — C(Ty + Tpax + Ty,)- (21

In our simulation we tried two values of C: 1000 and
10,000.

B. Genetic Algorithm

For each of the 25 strings, we must draw a 10-component
random phase vector and evaluate the associated 7.
There are 25 probability computations and 25 scaling op-
erations. Then with T, T,, and Ty, denoting the time
for scaling, crossover, and mutations, the total time for
the GA is

TEY = 25Q(Ty + Trax + Ty + Ts + Teo + Timn)

= 25Q(Ty + Taax + T4, 22)

where @ is the number of generations required to achieve
convergence. We have assumed that T + T, + Ty
< Ty + Tmax + Ty . This is borne out by our simula-
tions. The value of @ typically varied near 80.

C. Gradient Search
This case is more difficult to analyze, since the computa-
tional load is related to the complexity of the derivative of

" the generating function. Fortunately, for the 10-spot ar-

ray, the derivative of the generating function has an ana-
lytic form quite similar to that of the generating function
itself. Indeed, for the 10-spot array, we can derive that
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N

7l $) = X @?If(kA, ¢)

o

M= I
Mk
M=

k

exp{jl27(u; — u)kA + ¢, — &1}
N

= >, o’[M + 2Q(kA)], (23)
k=1

1

o~
Il

[ury
U

oy

i

where Q(kA) is given by
M M
Q(EA) = 121 -21 cos[2m(u; — ukA + & — ¢;l.
=1 i=1+
(24)

Likewise, we can write the following for the objective
function for the 10-spot array:

N
e(B, ¢) = kEl [B— M - 2Q(kA)2, (25)
N
:9_e_ = 28 — 2M — 4Q(kA)] (26)
B k=1 ' ’
de N
— = > [2B - 2M — 4Q(RA)][28,(kA)],
dd; k=1
1=1,.,M, @7
where
M
Sy(kA) = D, sin[2m(u; — upkA + ¢ — &,
i=1 .

il
l=1,.,M. (28

Comparing Egs. (27) and (28) with Eq. (23), we see that
computation of each gradient component is roughly on the
order of r,. The total number of derivative computa-
tions is M + 1, but since one component of ¢ can be set to
zero relative to the others, the actual number is M and
the computation time per cycle is MT,, . If there are P
cycles required for convergence, the total time required is

TE® = PMT,, . (29)

In our computations P had the value P = 20 to 50.
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6. OUTPUT DIFFRACTION EFFICIENCY

While the input diffraction efficiency 7, is computed as
the energy of the target function, it is useful to have an-
other measure of efficiency that is defined strictly in
terms of diffracted light. Such a measure is furnished by
the output diffraction efficiency 7,,;, defined by

energy in desired diffraction pattern

out = T otal energy in frequency plane

f I(u)du
R
= —_— (30)

Jm I(u)du

where R is the region containing the desired diffraction
pattern. We would like to make 7,,; independent of ap-
erture size, thereby having it reflect the properties of only
the generating transmittance g(x). One convenient way
to do this is to make the input aperture infinitely large.
Thus, in the case of a diffraction pattern consisting of spot
arrays, the input aperture would contain an infinitely pe-
riodic spatial function whose precise character would de-
pend on the energy distribution among the spots.

One final remark is in order before proceeding. The
two efficiencies 7, and 7, are closely related. This is
implied by Eq. (7), which, while it is a result based on an
average, shows that as #;, goes to unity, essentially all of
the diffracted light consists of the prescribed portion
[G1(»)]? as opposed to noise.

7. NUMERICAL RESULTS

Equation (15), with M = 10, is used as the generating
function for a 10-spot array. The three algorithms—
Monte Carlo simulation, genetic, and gradient search—
were implemented by using the following parameters:
aperture size, L = 1; pixel size in the SLM plane, Ax
= 0.00195; pixel size in the Fourier plane, Az = 1; num-
ber of points N in the discrete Fourier transform, N
= 512; spot locations in the frequency plane, u; = 210,
us = 220, ug = 230, uy = 240, us = 250, ug = 260, u,
= 270, ug = 280, ug = 290, and u;y = 300; and number
of points in a lookup table of sinc™(x), 5000, uniformly
spread over the range (0,1). With these data and the ma-
terial in Table 1, it is possible to replicate all the results
in Table 2 and the figures.

Table 1 gives the phase vectors computed for each al-
gorithm. Table 2 gives the performance results for the

Table 1. Optimum Phase Angles®

Algorithm é1 &2 b3 [ ) b s [ 10
MCS1 0.9729 0.5579 0.7178 0.1777 0.5698 0.3401 0.2559 0.5098 0.5428 0.6863
MCS2 0.3224 0.8596 0.6905 0.2020 0.3622 0.7764 0.3858 0.4821 0.3755 0.3600
GA 0.7243 0.6784 0.6149 0.7331 0.1056 0.4018 0.7185 0.2845 0.9130 0.4770
Gradient 0.6705 0.2675 0.3119 0.8618 0.1963 —-0.1426 0.6288 0.8404 -0.0690 0

¢Final phases obtained by three algorithms: MCS1 is the Monte Carlo simulation with 1000 tries, MCS2 is the Monte Carlo simulation with 10,000
tries, GA is the genetic algorithm, and Gradient is the gradient-search algorithm used with the objective function in Eq. (19). To get the actual phase in

radians, multiply each entry by 2.
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Table 2. Performance of Optimization Routines®

Algorithm
Performance
Measure MCS1 MCS2 GA Gradient NPRE
Pseudorandom Encoding
Nin [Eq. (2)] 47.67% 57.98% 64.65% 69.33% 10%
Average 7, 47.85% 58.57% 64.96% 69.35% 10.65%
ADC [Eq. (33)] 0.2251 0.1897 0.1597 0.1846 0.5427
ADC* [Eq. (34)] 0.3270 0.2924 0.2685 0.2497 0.7942
(worst case)
oy [Eq. (35)] 0.1363 0.1144 0.1010 0.1151 0.3479
Kinoform (Phase-Only)
Tout [Eq. (31)] 94.17% 95.61% 97.96% 96.56% 53.94%
ADC [Eq. (32])] 0.2948 0.3805 0.4616 0.2135 0.9179
oy [Eq. (36)] 0.2112 0.2223 0.3013 0.1171 1.3562
Speed 1000 10000 ~2000 200-500 0

“Input (7;,) and output (7,,,) diffraction efficiencies for the four optimization routines as well as for NPRE and phase-only approaches. The actual
speed obviously depends on many factors, such as the platform used, the software, and the skill of the programmer. The numbers in the Speed row are the
number of cycle times (Ty + T'max + T, ) required to achieve convergence. For the gradient case the cycle time is actually shorter, since T'y + Ty is

absent.

three optimization algorithms, as well as for the direct PO
(kinoform) result and naive pseudorandom encoding
(NPRE). However, before we discuss the results, some
remarks are in order:

1. Neither 7;, nor 7, measures the uniformity of the
spot intensities in the spot array. Indeed, a large 7,y
implies that most of the light is going to the correct loca-
tions but is not indicative that the light is evenly distrib-
uted. To control the uniformity of the peaks, one should
define a diffraction-plane uniformity metric and use this
metric as a constraint in the aperture plane. This is
what is done in an iterative vector-space algorithm. We
shall call this metric the average deviation contrast
(ADC) and define it below.

2. Under ideal circumstances one would expect that,
by Parseval’s theorem, 7;, and 7,,; should be essentially
equivalent. However, the presence of PRE noise will
usually cause a minor difference between them. Since
noise intensity adds to the total power in the peaks, it is
not surprising to find 7, to be slightly larger than #;,.

Table 2 needs some explanation. The first row lists
the four optimization routines: MCS1 (Monte Carlo
simulation with 1000 trials), MCS2 (Monte Carlo simula-
tion with 10,000 trials); GA (genetic algorithm), the gra-
dient search, and, as reference, NPRE, ie., set ¢ = 0.
The third row lists 7;, for various cases, with the use of
Eq. (2) for 7;, and Eqgs. (14) and (15) for the generating
transmittance and the generating function, respectively.
The fourth row yields 7, for the various cases, with the
use of a discrete equivalent of Eq. (30) for the spot array:

10
21 I(u;)
L — @1
20 I(nAu)

Since each PRE trial yields a random outcome, the 7.,
that appears in the fourth row is the average of 10 such
trials.

The next three rows are measures of the uniformity of
the spots in the spot array. For example, row 5 yields the
ADC averaged over 10 trials. The ADC for a single trial,
say the ith, is computed as

Igrgxp - Ig)inp
ADC; = =, 32)
max,p min,p

where 19 pand I @ p are the intensities of the highest
and lowest peaks at the desired locations, respectively, of
the ith trial. A low value of ADC is desired (zero is opti-
mum); a high value indicates considerable variability
among peaks. Then row 5 gives

10

ADC = — D, ADG;, (33)
10>

while row 6 gives the worst case,
ADC* = max ADC;. (34)

14

The entries in row 7 yield
g 1o
oy = — () 35
N 10,-21 o @)
where oﬁ) , the normalized standard deviation, is given

by
1/2

10
. o
ugl I8, — T04]

() =
where I ge)ak,n is the intensity of the nth peak (there are

10) of the ith trial (there are also 10) and I\, is the av-
erage peak height of the ith trial, computed as

1 10
n=1
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In Eq. (36) n is a spatial, transverse index, while i is a lon-
gitudinal time or ensemble index. Also, in Egs. (83)-
(85), small numbers are more desirable than large ones.

Based on an examination of the first seven rows of
Table 2, it appears that all four optimization routines
greatly outperform NPRE. In attempting to evaluate the
results, however, it is important to remember that not
only is PRE a random process but all the optimization
routines contain an element of randomness as well.
MCS1, MCS2, and the GA are inherently stochastic pro-
cedures, and even the gradient search requires a random
starting point. To illustrate the effect of the random
starting point on the gradient-search results, we obtained
in = 68.86% after 20 iterations in one run, 7
= 67.74% after 50 iterations in another run, and 7,
= 68.33% in a third run. The values of 7;, in the third
row are the best results selected from several trials.

It would appear that the gradient search and the GA
clearly outperform MCS1 and MCS2. While the gradient
search yields a slightly higher #;, than the GA (69% ver-
sus 65%), the uniformity of the peaks is slightly better in
the GA (ADC = 0.16 versus 0.18 for the gradient algo-
rithm; remember that smaller is better).

The three rows under the heading Kinoform (Phase-
Only) yield performance data on the PO case. In other
words, having computed the phases by one of the various
optimization methods, we realize an input transmittance
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Fig. 1. Diffraction intensity produced by an ideal generating
function [Eq. (25)] with no phase optimization.
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Fig. 2. Diffraction intensity produced by the NPRE algorithm.
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Fig. 8. Diffraction intensity realized by PRE after phase optimi-
zation by MCS1.
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Fig. 4. Diffraction intensity realized by PRE after phase optimi-
zation by MCS2.
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Fig. 5. Diffraction intensity after phase optimization by the ge-
netic algorithm followed by PRE.

as exp{jarg{glx, #)]}. Thus the input transmittance is
modulated by only the phase of the generating function.
The most striking observation here is the very high 7,,4.
Indeed, it is not difficult to show that, for the PO method,
high values of 7, are expected.” The downside of the
PO approach is the possibility of significant unevenness of
the peaks in the spot array as compared with the peaks
produced by the optimized PRE. The advantage of the
latter over the former becomes evident upon comparing
rows 4 and 6 with rows 8 and 9, respectively.
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Graphical results reinforce the conclusions presented
in Table 2. Figure 1 shows the spot array generated by
the generating transmittance of Eq. (14) with the use of
Eq. (15). In this figure the phases are those computed by
the gradient-search algorithm (Table 1). As expected,
the peaks are uniform and the cross-term noise (overlap-
ping sidelobes) is virtually imperceptible on a linear scale.
Figure 2 shows the “spot array” generated by the NPRE
algorithm: The spot array is difficult to detect in the
noise; hence the need to optimize the generating function.
Figures 3 and 4 show the spot-array peaks with the use of
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Fig. 6. Diffraction intensity after phase optimization by the gra-
dient algorithm followed by PRE.
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Fig. 7. Phase-only diffraction intensity produced by a genetic-
algorithm-optimized generating transmittance.
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Fig. 8. Phase-only diffraction intensity produced by a gradient-
search-optimized generating transmittance.
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PRE after optimizing by MCS1 and MCS2, respectively.
Here the values of 7., are 47.71% and 58.85%, respec-
tively. The unevenness of the peaks is greatly reduced
over that of the NPRE case but is still pronounced when
MCS1 is used. The efficiency in using MCS2 is notice-
ably higher than that in using MCS1.

Figure 5 shows the diffraction intensity furnished by
PRE with use of the GA-optimized generating transmit-
tance for 7,,; = 65.42% and & = 0.0834. Figure 6 shows
the PRE result with use of the gradient-optimized gener-
ating transmittance. It has 7, = 71.48% and &
= 0.0848. It can be seen from Fig. 5 that the GA yields
the most uniform spot array, while from Fig. 6 we see that
the gradient search yields the highest diffraction effi-
ciency.

Finally, Figs. 7 and 8 show the direct PO results with
use of the optimized phases from the GA and the gradient
search, respectively. As stated above, the diffraction ef-
ficiency 7,y is very high in both cases, but the nonunifor-
mity of the peaks is pronounced in the PO/GA case and
might be unacceptable for optical switching or related ap-
plications. Interestingly, the PO/gradient-search case
gave acceptable results.

8. CONCLUSIONS

Pseudorandom encoding (PRE) is a means for approxi-
mately realizing a desired far-field diffraction pattern by
modulating only the phase of the input transparency. As
a consequence, the prescribed far field is realized, on the
average, but in the presence of noise. Optimizing the in-
put diffraction efficiency, the latter being proportional to
the energy in the generating transmittance, can reduce
the noise and increase the diffraction efficiency. In the
case of a spot array, the generating or target function con-
tains an adjustable free-phase vector whose proper selec-
tion can lead to higher diffraction efficiencies. Unfortu-
nately, a proper selection by analytic means does not
seem possible.

In this paper we considered several techniques for find-
ing the optimum free-phase vector. Best results were ob-
tained by using both a genetic algorithm and a gradient
search, which can offer significant improvements over na-
ive PRE and even Monte Carlo simulation. Of the three
optimization methods studied, the gradient-search algo-
rithm has the lowest computational complexity.

APPENDIX A: REVIEW OF THE
PSEUDORANDOM ENCODING ALGORITHM

There are two key ideas behind PRE: (1) that the ex-
pected value of a discrete random variable can be differ-
ent from any of the values that the random variable can
realize and (2) the law of large numbers. How the PRE is
affected by the LLN is discussed in Section 3 of the paper.
To illustrate the first idea, however, is easy. Suppose
that we wish to realize the transmittance value g(x)
= 0.745 exp(i0.46) at a point x but we are limited to a
unity-magnitude transmittance and a phase that can
take only one of two values: 0 and #/2. Then with p
= Prob(6 = w/2) andq = 1 — p = Prob(8 = 0), we find
that E[exp(i6)] = 0.745 exp(i0.46) when p = 1/3. Thus
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the transmittance at x has the required value as an en-
semble average but has a value of either 1 orj = V=1 for
any realization. The mean square error e, for this ex-
ample has value €,, = 0.444. In general, except for
some trivial cases, there will always be an error when a
fully complex function is realized, on the average, by us-
ing an ensemble of PO values.

In the studies of Cohn and co-workers,2?5 PRE is
taken to mean the procedure by which the phases of
uniform-magnitude SLM-plane pixels are chosen from an
appropriate uniform distribution to achieve an average
far-field intensity that approximately corresponds to the
prescribed far field.

Realizations of the desired fully complex transmittance
function g(x) are achieved through random-sample func-
tions {exp[j(x)]}. In particular, at each x, we seek to
solve the equation

&= f exp(ja)f(a)da (A1)

for the probability density function fy,(a), where g
= g(x), 8 = 6(x), etc. A solution to Eq. (Al) is obtained
by limiting the solution to the subset of the two-
parameter (¢, w) family of uniform probability density
functions of the form

1 a—c
dbola;c,w) = —rect( ) (A2)
w w

where ¢ is the mean and w?/12 is the variance of the as-
sociated random variable 4. Using Eq. (A2) in Eq. (AD)
yields

sin(w/2)

g = exp(je) ———
w

5 = exp(jc)sinc(w/2w). (A3)

Then exp(jf) is an unbiased estimator for g if, at the
point x, the value of #is chosen from a uniform probability
density function with parameters ¢ and w such that

c(x): ¢ = arg[g(x)], (A4)
sinc(w/27)| = |g(x)|. (A5)

In particular, with (¢, w) restricted to 0 < ¢ < 27 and
0 < w < 27 for all x in the support of g(x), the equation
|g(x)| = sinc(w/27) is invertible as w = 27 sinc™(|g})
for |g(x)] = 1.

w(x):

APPENDIX B: DESCRIPTION OF THE
GENETIC ALGORITHM

The steps in implementing the GA for a 10-spot array in-
volve the following:

1. With ¢; = (&;1, b;2,.-., P;10) representing the ith
trial phase vector, each component ¢;;, j = 1,..., 10, is
assigned a 10-bit binary string allowing for the represen-
tation of 1024 possible phase values. This is repeated for
i=1,2,...,25. The choice of 25 population elements is
somewhat arbitrary. The actual values of the phases are
obtained from a RN generator and converted to binary
form. The totality of binary characters representing the
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phase vector ¢; is called a string. The 25 strings, repre-
senting the 25 phase vectors ¢;, i = 1,..., 25, form an ini-
tial population.

2. For each ¢;, selection probabilities {p;} and cumu-
lative selection probabilities {g;} are computed, respec-
tively, as
7% :

w G 2P (B1)
im

25
> 7
i=1

(i)

where 7 is the fitness function of the ith trial phase vec-
tor.

3. Anew set of fitness values and p}’s and g}’s are cre-
ated with the use of a linear function to transform the
previous set { 7{)} into a new set {nﬁ;)*}. The linear func-
tion is given by

bi=

x ,
o = arfl + B,
where

C77max ~ Tavg
0= —,
Nmax — Navg
Timax = MAX 75,
i

25
= iE (2)
Navg 254 Tin »

ﬁ=1_a; (B2)

and C is a constant determined by the user. Typically,
for small populations, C is adjusted to lie in the interval
1.2-2. Inourcase C = 2. The purpose of fitness scaling
is to avoid premature convergence as well as maintaining
a significant number of high-fitness strings late in the
run.

4. With the use of a RN generator to generate numbers
in the interval [0,1], a set of 25 strings is selected from the
original population according to the newly created cumu-
lative selection probabilities {g}}.

5. Crossover: Offspring are created from mating pairs
randomly selected from the 25 strings. Crossover sites
are determined by using outputs of a RN generator issu-
ing integers in the range [1,99].

6. Mutations: These are usually created with very
low probabilities. In our case the mutation probability
was 0.01 and reduced to 0.005 as the procedure matured.

7. Repeat steps 2-6 to generate subsequent genera-

tions. Stop when the convergence criterion has been
met.
ACKNOWLEDGMENTS

The work in this paper was supported by Office of Naval
Research grant N00014-96-1-1296, a Defense Advanced
Research Projects Agency grant through ARO DAAHO04-

'94-G-0358, and NASA cooperative agreement NCC5-222.

The authors are grateful to three anonymous reviewers
for their perceptive comments, which led to a better pa-
per.




Yang et al.

Address correspondence to Yongyi Yang at the location

on the title page or by phone, 312-567-3423 or e-mail,
yy@ece.iit.edu.

REFERENCES

1
2.

10.

11.

12.

13.
14.

J. N. Mait, “Understanding diffractive optic design in the
scalar domain,” J. Opt. Soc. Am. A 12, 2145-2158 (1995).
J. N. Mait, “Fourier array generators,” in Micro-Optics:
Elements, Systems, and Applications, H. P. Herzig, ed.
(Taylor & Francis, London, 1997), pp. 293-328.

U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on
the diffraction efficiency of phase-only fanout elements,”
Appl. Opt. 81, 27-37 (1992).

F. Wyrowski, “Diffraction efficiency of analog and quan-
tized digital amplitude holograms: analysis and manipu-
lation,” J. Opt. Soc. Am. A 7, 383-393 (1990).

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-
transform algorithm applied to computer holography,” J.
Opt. Soc. Am. A 5, 1058-1065 (1988).

F. Wyrowski, “Iterative quantization of digital amplitude
holograms,” Appl. Opt. 28, 38643870 (1989).

F. Wyrowski, “Upper bound of the diffraction efficiency of
diffractive phase elements,” Opt. Lett. 16, 1915-1917
(1991).

J. P. Allebach and D. W. Sweeney, “Iterative approaches to
computer generated holography,” in Computer-Generated
Holography II, S. H. Lee, ed., Proc. SPIE 884, 2-9 (1988).
H. Stark, W. C. Catino, and J. L. LoCicero, “Design of phase
gratings by generalized projections,” J. Opt. Soc. Am. A 8,
566-571 (1991).

H. Stark, Y. Yang, and D. Gurkan, “Factors affect conver-
gence in the design of diffractive optics by iterative vector
space methods,” J. Opt. Soc. Am. A 16, 149-159 (1999).

N. C. Gallagher and B. Liu, “Method for computing kino-
forms that reduces image reconstruction error,” Appl. Opt.
12, 2328-2335 (1973).

M. P. Dames, R. J. Dowling, P. McKee, and D. Wood, “Effi-
cient optical elements to generate intensity weighted spot
arrays: design and fabrication,” Appl. Opt. 30, 2685-2691
(1991).

J. Bengtsson, “Kinoform design with an optimal-rotation-
angle method,” Appl. Opt. 83, 68796884 (1994).

B. R. Brown and A. W. Lohmann, “Complex spatial filtering
with binary masks,” Appl. Opt. 5, 967-970 (1966).

15.

16.

17.

18.

19.

20.

21

22,

23.

24.

25.

26.

27.
28.

Vol. 17, No. 2/February 2000/J. Opt. Soc. Am. A 293

W. H. Lee, “Computer-generated holograms: techniques
and applications,” in Progress in Optics, E. Wolf, ed.
(Elsevier, Amsterdam, 1978), Vol. 16, pp. 119-231.

W. J. Dallas, “Computer-generated holograms,” in The
Computer in Optical Research, B. R. Frieden, ed. (Springer,
Berlin, 1980), Chap. 6, pp. 291-366.

L. B. Lesem, P. M. Hirsch, and J. A. Jordon, Jr., “The kino-
form: a new wavefront reconstruction device,” IBM J. Res.
Dev. 13, 150-155 (1969).

D. C. Chu and J. R. Fienup, “Recent approaches to
computer-generated holograms,” Opt. Eng. 13, 189-195
(1974).

D. Casasent and W. A. Rozzi, “Computer-generated and
phase-only synthetic discriminant function filters,” Appl.
Opt. 25, 37673772 (1986).

D. Prongue, H. P. Herzig, R. Dandliker, and M. T. Gale,
“Optimized kinoform structures for highly efficient fan-out
elements,” Appl. Opt. 81, 5707-5711 (1992).

M. W. Farn, “New iterative algorithm for the design of
phase-only gratings,” in Holographic Optics: Computer
and Optically Generated, I. Cindrich and S. H. Lee, eds.,
Proc. SPIE 1555, 34-42 (1991).

J. D. Stack and M. R. Feldman, “Recursive mean-squared-
error algorithm for iterative discrete on-axis encoded holo-
grams,” Appl. Opt. 31, 48394846 (1992).

R. W. Cohn and L. G. Hassebrook, “Representations of fully
complex functions on real-time spatial light modulators,” in
Optical Information Processing, F. T. S. Yu and S. Jutam-
ulia, eds. (Cambridge U. Press, Cambridge, UK, 1998),
Chap. 15, pp. 396-432.

R. W. Cohn and M. Liang, “Approximating fully complex
spatial modulation with pseudo-random phase-only modu-
lation,” Appl. Opt. 33, 44064415 (1994).

R. W. Cohn and M. Liang, “Pseudo-random phase-only en-
coding of real-time spatial light modulators,” Appl. Opt. 35,
2488-2498 (1996).

S. Geman and D. Geman, “Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images,” IEEE
Trans. Pattern. Anal. Mach. Intell. PAMI-6, 721-741
(1984).

S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science 220, 671-680 (1983).

H. Stark and Y. Yang, Vector Space Projections: A Numeri-
cal Approach to Signal and Image Processing, Neural Nets,
and Optics (Wiley, New York, 1998).




Duelli et al.

Vol. 16, No. 10/October 1999/J. Opt. Soc. Am. A 2425

Modified minimum-distance criterion for blended
random and nonrandom encoding

Markus Duelli, Matthew Reece, and Robert W. Cohn
The ElectroOptics Research Institute, University of Louisville, Louisville, Kentucky 40292

Received December 7, 1998; accepted May 17, 1999; revised manuscript received May 24, 1999

Two pixel-oriented methods for designing Fourier transform holograms—pseudorandom encoding and
minimum-distance encoding—usually produce higher-fidelity reconstructions when combined than those pro-
duced by each method individually. In previous studies minimum-distance encoding was defined as the map-
ping from the desired complex value to the closest value produced by the modulator. This method is compared
with a new minimum-distance criterion in which the desired complex value is mapped to the closest value that
can be realized by pseudorandom encoding. Simulations and experimental measurements using quantized
phase and amplitude modulators show that the modified approach to blended encoding produces more faithful
reconstructions than those of the previous method. © 1999 Optical Society of America
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1. INTRODUCTION

Today the leading methods of designing Fourier trans-
form holograms for laser pattern generation and optical
interconnects use iterative search and numerical optimi-
zation procedures that vary the modulation values and
various degrees of freedom to achieve acceptable diffrac-
tion patterns.!® In this prior work it is normally as-
sumed that the design is to be realized as a fixed-pattern
diffractive optical element that is subsequently mass pro-
duced, which makes computation times of a few minutes
to hours’ insignificant compared with the time required
to fabricate the device. However, our previous studies on
real-time programmable spatial light modulators
(SLM’s)® and diffractive optical element rapid prototyping
systems® have led us to reconsider the design problem
with particular emphasis on significantly reducing the de-
sign time.

By far, the fastest design algorithms are those that di-
rectly map a desired complex-valued function into a
transmittance function that can be physically produced
by the available modulator. The delayed-sampling
method of Brown and Lohmann is one of the earliest ap-
plications in optics of this idea.!® The numerical speed of
this and many other mapping/encoding methods that
were evaluated in the first decade of computer-generated
holography'!2 is due to serial encoding of each desired
complex value into a corresponding value of transmit-
tance. Since the various degrees of freedom are not in-
cluded in this design approach (e.g., in the design of most
spot array generators, where the phase of the far-field dif-
fraction pattern is usually not of concern), the perfor-
mance of the encoding method in terms of diffraction effi-
ciency or other related metrics can be substantially less
than that for the optimization methods. Nonetheless, we
believe that there are applications that would benefit
from the faster encoding algorithms (for example sce-
narios see Ref. 13).

To reduce the differences in performance between opti-
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mal designs and encoded designs, we have begun investi-
gating suboptimal design strategies in which some addi-
tional computations (but fewer than those required to find
the global optimum) are directed at improving device
performance.'#'® Two possible suboptimal strategies are
(1) to use the best solution found by optimization for a
given amount of time or (2) to optimize by using some,
rather than all, of the available design freedoms. It is
this second approach that we consider here.

Specifically, we consider encoding methods that can be
improved by varying a single design freedom/free param-
eter. The free parameter (referred to as y) scales the
magnitude of the complex-valued function that is to be en-
coded. Each value of the complex function is encoded by
one of two encoding algorithms: pseudorandom encoding
(PRE)*® for smaller-magnitude values and minimum-
distance encoding (MDE)Y for larger values, both of
which will be reviewed in Sections 2 and 3. Increasing
the value of the free parameter decreases the number of
complex values that are encoded by the PRE algorithm
and increases the number of values encoded by the MDE
algorithm. In this way the free parameter controls the
blending of the two encoding algorithms.

Designs by this approach have been described in a
nonarchival conference proceedings'* and in brief detail
in a short paper.’® In each specific design considered, it
was found that better performance is achieved over PRE
or MDE individually by blending the two algorithms and
that there is a particular degree of blending (as measured
by 7) that gives the best performance of all blendings. At
times we have noted dramatic improvements in perfor-
mance even if only a few percent of the complex values
are encoded by MDE.!* However, we recently observed
for modulators that produce only three quantized values
of phase that the blending of MDE and PRE leads to
only slight performance improvements, and for some
blendings the performance is even lower than that with-
out blending.

© 1999 Optical Society of America
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This observation leads us in this paper to propose, con-
sider, and evaluate a modified blending of encoding algo-
rithms. Figure 1(a) shows the phase-only SLM charac-
teristic that was considered in Refs. 14 and 15. Desired
complex values that are inside the phase-only modulation
characteristic (striped region) can be pseudorandom en-
coded. The values outside the region are mapped to the
closest point on the modulation characteristic (along ra-
dial lines centered on the origin).

There is an alternative possible mapping that becomes
apparent when considering blended encoding with noncir-
cular SLM characteristics. This is illustrated in Fig. 1(b)
for a tri-phase SLM. The striped region again represents
the range of values that can be encoded by the PRE algo-
rithm. There are now two possible minimum-distance
mappings. The conventional MDE algorithm'? maps the
desired value to the closest value produced by the SLM.
Alternatively, we propose a modified MDE (mMDE) in
which the desired value is first mapped to the closest
value that can be pseudorandom encoded, and then the
mapped value is encoded to a modulation value by PRE.

In this paper we will show, by using both computer
simulations and experiments with a phase-only SLM,
that the proposed modified blended encoding algorithm
generally outperforms the earlier blended algorithm in
terms of two metrics that describe fidelity of the recon-
struction (the ratio of intensity of the desired portions of
the diffraction pattern to peak background noise and the
relative error in intensity between the desired and actual
diffraction patterns). This demonstration is the primary
objective of this paper. One secondary objective is to sug-
gest how blended encoding algorithms can be developed
for a variety of SLM modulation characteristics. Our ap-
proach is to develop blended algorithms for several differ-
ent modulation characteristics. Another secondary ob-
jective is to provide a comprehensive comparison of the
performance of various encoding algorithms developed to
date. This is achieved by encoding an identical desired
function for each algorithm and for each value of the scal-
ing parameter .

Section 2 reviews the development of the proposed en-
coding algorithm and presents general background that is
used to develop the new algorithms. Section 3 defines
the modulation characteristics and the algorithms used in
the study. Section 4 reports the results of the simulation
study, and Section 5 presents the experimental results.

e modified &¢

conventional

(@) (b)
Fig. 1. Modulation characteristics for which the minimum-
distance mapping to the modulation characteristic and to the en-
coding range (striped regions) of the PRE algorithm are (a) iden-
tical and (b) different. In (a) the modulation characteristic is a
circle, and in (b) the modulation characteristic is the three dots,
one at each apex of the triangle.
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2. BACKGROUND ON AND REVIEW OF
ENCODING

A. Review of Pixel-Oriented Encoding Algorithms

The design methods considered in this paper can be clas-
sified as pixel-oriented encoding, since each pixel repre-
sents a desired complex value independent of the values
represented by all other pixels in the SLM.}® Pixel-
oriented encoding is a special case of point-oriented en-
coding. In traditional point-oriented encoding methods,
the desired complex-valued function is modulated onto a
carrier of spatial frequency that exceeds the space—
bandwidth product (SBWP) of the desired complex
function.1%1% Therefore these methods require SLM’s
with SBWP’s that exceed the SBWP of the desired signal.
However, in pixel-oriented encoding the SBWP of the sig-
nal can be as large as that of the SLM as a result of the
one-for-one mapping between each desired complex value
and the modulation value of each corresponding pixel.
Thus pixel-oriented encoding has an advantage over tra-
ditional point-oriented encoding, and also group-oriented
encoding methods,®'%'2 when the SLM has a small num-
ber of pixels, as is the case for most of the electrically ad-
dressable SLM’s that are available today.

There appear to be two approaches to pixel-oriented en-
coding. One approach is to map each desired complex
value to the closest available modulation value produced
by its corresponding pixel.'? For continuous-value
phase-only SLM’s this prescription leads to a unique map-
ping in which the amplitude of each value is set to unity
and the mapped phase is identical with the desired phase.
That is, MDE for the continuous-value phase-only SLM
reduces to the well-known kinoform?® or phase-only
filter. 2!

The second encoding approach, PRE,'6?2 rather than
selecting the closest available modulation value, selects
one modulation value from a range of possible values by
using a computer-generated random (i.e., pseudorandom)
number. The statistical properties of the random-
number generator are designed so that the average modu-
lation value is identical with the desired complex value.
The diffraction pattern produced by this transmittance
function has an average intensity that is identical with
the desired diffraction pattern plus a noise background.
The diffraction efficiency 7 of the pseudorandom-encoded
function is identical with that of the desired fully complex
function. The remaining energy 1 — 7 is either scat-
tered into the noise background for phase-only SLM’s or
scattered into noise and absorbed if the SLM is non-
phase-only.

PRE differs from MDE in that MDE always maps the
desired value to the closest available value on the modu-
lation characteristic while PRE maps the desired value to
closer modulation values with greater relative frequency
than to modulation values that are farther away. For
quantized modulation characteristics the encoding algo-
rithms are analogous to the numerical rounding of
floating-point numbers. MDE is analogous to nearest-
integer rounding, while PRE corresponds to rounding to
the nearest integer most frequently and to the furthest in-
teger least frequently according to a random selection
process. MDE and PRE are illustrated in Fig. 2 for tri-
phase modulation (with modulation values a,,,, a,,2, and
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@ (b)

Fig. 2. Comparison of (a) the MDE algorithm with (b) the PRE
algorithm for a tri-phase phase-only modulation characteristic.

Fig. 8. Illustration of the encoding range and the fully complex
encoding range, and their relationship to the scaling parameter y
for a quad-phase modulation characteristic.

a,3). For MDE [Fig. 2(a)], mapping to the closest value
of modulation divides the complex plane into three deci-
sion regions separated by the three lines. For PRE [Fig.
2(b)] the modulation values a,,;, a,2, and a3 are ran-
domly selected with the relative frequencies/probabilities
P, q, and r (which are inversely proportional to/;, I3, and
13, the distances between the desired value a, and the
modulator values). The complete mathematical specifi-
cation of these PRE and MDE algorithms for tri-phase
modulation and various other modulation characteristics
are given in Section 3. The PRE algorithms for quan-
tized modulation were originally derived and compared
with MDE algorithms for quantized modulation in Ref.
22,

B. Review of Reduced-Parameter Suboptimal Design
Methods

The earliest applications of design optimization using a
few parameters appear in the work of Farn and
Goodman?® and in Juday'’?* on the design of single-
object correlation filters for limited-modulation-range
SLM’s.1%232¢  Reference 17 presents this problem in its
most general form. A fully complex filter is specified that
optimizes a given performance metric. The filter has the
complex-valued free parameter I' = yexp(jB), which
scales the amplitude of the desired function by vy and ro-
tates the phase by 8. The desired function is encoded by
the MDE algorithm for different values of y and 8. The
optimal values y* and B* minimize the sum of squares
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error between the desired function and the encoded val-
ues. There are no other free parameters for the single-
object matched filter, and thus the design is optimal.
However, more recent studies have reported suboptimal
searches over these two parameters for the design of com-
posite pattern recognition filters®® and spot array
generators.?® These studies predated and stimulated the
development of the first algorithms that blend MDE and
PRE to various degrees as a function of the free param-
eter 7.14’15

In specific cases searches over one or both of the free
parameters can be avoided. For specific modulation
characteristics the encoding algorithm can be indepen-
dent of y and/or 8. For instance, in Fig. 2(a), the sum of
squares error for MDE is independent of y but dependent
on B. As stated in Section 1, for continuous-value phase-
only SLM’s the MDE algorithm reduces to the classical ki-
noform, and thus no search is required at all. Also, the
distribution of the desired values over the complex plane
can make the optimization insensitive to the variation in
yor B. For instance, in Fig. 2, if the desired complex val-
ues are uniformly distributed in magnitude and phase,
then there is essentially no dependence on the value of 8.
This observation is used in the present study to perform
single-parameter searches over y for both MDE and
blended encoding.

C. Pseudorandom Encoding Range and Fully Complex
Encoding Range

Another reason for the development of blended algo-
rithms is that while MDE algorithms can encode complex
values of any magnitude, the PRE algorithm cannot.?”
This is because in PRE the desired value is encoded so
that its complex value is equivalent to an average of the
available modulation values, and the average is thus con-
strained to lie between the modulation values. A proce-
dure for evaluating the range over the complex plane that
can be encoded by a given PRE algorithm is developed in
Ref 27. Ranges for the modulation characteristics con-
sidered in this paper are shown in Figs. 1 and 3. For con-
tinuous phase-only modulation [Fig. 1(a)l, the PRE range
is the interior of the unit circle. Figure 1(b) shows the
range for three-value quantized phase modulation. The
encoding for the PRE algorithm is the triangular region
that is enclosed by the line segments connecting the three
values of modulation. Similarly, for a four-value quan-
tized phase modulation (Fig. 3), the encoding range is the
square and its interior, which is defined by the line seg-
ments connecting the modulation values.

Note that in Fig. 3 the desired complex function can be
normalized so that its values are contained within a circle
of radius y = V1/2. We refer to this as the fully complex
encoding range for the quantized PRE algorithm. (For
individual functions for which the distribution of complex
values is noncircular, the fully complex range can ap-
proach y = 1. However, we apply this definition not to
individual functions but rather to the set of all functions
of interest.) Also note that for phase-only modulation the
encoding range and the fully complex range are identical
(the region enclosed by y = 1 in Fig. 3) and that they en-
close a larger area of the complex plane than does the
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quantized PRE algorithm. In this paper the encoding
range is increased by blending PRE algorithms with algo-
rithms that do not have limited encoding ranges. As
shown in Sections 4 and 5, the diffraction efficiency is in-
creased and the fidelity is optimized for fully complex en-
coding ranges (as designated by the scaling parameter v)
that exceed the encoding range of PRE alone.

3. DESIGN OF THE STUDY

A. Modulation Characteristics

The modulation characteristics considered in this study
are illustrated in Fig. 4. Three of the characteristics
[(a)-(c)] are phase only: (a) continuous, (b) three phases
uniformly spaced around the unit circle, and (c) four uni-
formly spaced phases. Adding an additional zero value
to each characteristic gives the bi-amplitude modulation
characteristics [(d)-(f)]. We will refer to these modula-
tion characteristics by using the descriptive terms tri-
phase and quad-phase. Also, we use the terms bi-
amplitude phase and phase-only to distinguish between
modulation characteristics that have or do not have a zero
value.

B. Encoding Algorithms

The implementation and the theory of PRE and MDE
have been presented in the publications reviewed in Sec-
tions 1 and 2. We present only the details necessary to
permit others to understand and to reproduce the results
presented in Sections 4 and 5. As an aid to the reader,
each of the specific algorithms studied is presented in the
figures. We begin with the less-involved algorithms for
the continuous modulation characteristics [Figs. 4(a) and
4(d)] and proceed through increasingly involved algo-
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rithms for tri-phase [Figs. 4(b) and 4(e)] and quad-phase
[Figs. 4(c) and 4(f)] characteristics.

C. Encoding Algorithms for Continunous Spatial Light
Modulators
Figure 5(a) illustrates MDE for a phase-only SLM. As
mentioned in Subsection 2.B because of circular symme-
try of the modulation characteristic the desired fully com-
plex function [illustrated by the values a,; and a,; in Fig.
5(a)] can be scaled by an arbitrary complex number I' and
the encoding still maps to the unit circle identically.
However, with the addition of a zero value of modulation
MDE for the bi-amplitude phase modulator, the mapping
becomes more involved in two respects: (1) While the
mapping is still along radial lines, there is now a thresh-
old level [dashed curve in Fig. 5(d)]. Values less than ra-
dius 1/2 are closer to the origin than to unity and there-
fore map to the origin. (2) Because of the threshold the
mapping now depends on the magnitude of the scaling pa-
rameter y. For y = 0 all the desired complex values map
to a,y, and for y = = the complex values map to the unit
circle, which is identical with the mapping in Fig. 5(a).
Our convention for reporting the value of the scaling
parameter y (for all encoding algorithms presented) is as
follows: The desired complex function consists of N
samples a,; at positions indexed by i from 1 to N. The
complex values are normalized so that the maximum
value of |a;;| from the N samples is identical with v. The
value of y that produces the best performance according
to a given metric or cost function is usually written as y*.
Figure 5(b) illustrates PRE for phase-only SLM’s.
This particular algorithm was introduced in Ref. 22. The
desired value a,; is mapped to one of two modulation val-
ues that are 180° apart. For each pixel transmittance
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Fig. 5. Illustration of the individual MDE and PRE algorithms together with their blending for continuous modulation characteristics.

a,; , the probability of selecting the modulation value that
is closer to the desired value is

pi = (1 + |a;])/2, 6]

and the probability of selecting the alternative value is
q; =1 — p;. With these values of probability, the en-
coding formula is

if 0 <s;<p;
, @

_ [ explJjarg(a.;)]
B if Pi = s; <1

—exp[j arg(a,;)]

where a; is the actual modulation selected for the ith
modulator pixel and s; is a computer-generated random
number uniformly distributed between 0 and 1. To re-
duce encoding errors, one usually tries to make the value
of y as large as possible.?”  For phase-only SLM’s this
corresponds to v = 1. For values of ¥ > 1 the complex
values that exceed unity cannot be pseudorandom en-
coded. These values can be encoded by MDE, which
leads to the blended minimum-distance and pseudoran-
dom encoding algorithm (MD-PRE) illustrated in Fig.
5(c).

The PRE algorithm for bi-amplitude phase modulation
is illustrated in Fig. 5(e). The probability is

pi = lagl, (3)

andg; = 1 — p;. The ehcoding formula is

exp[j arg(a,;) if 0 <s;<p;
i=[ plJ arg(a,;)] P @

0 if D; =g i = 1 '
The MD-PRE algorithm for bi-amplitude phase modula-
tion [Fig. 5(D] uses the PRE algorithm for encoding values

inside the unit circle and phase-only MDE for encoding
values outside the unit circle.

D. Ternary Pseudorandom Encoding

The encoding formula for ternary-valued modulation?? is
presented here in general form because it is the basis for
the PRE algorithms for all the quantized SLM’s consid-
ered in this study [Figs. 4(b), 4(c), 4(e), and 4(f)]. The
ternary PRE algorithm can be specified for any three
modulation values a,,;, 4,2, and a,,5 as long as they do
not lie on a common line. The encoding formula is

a,; if 0 <s;<p;
a=1{8y ifp=ss<1-r, 5)

a,3 ifl—r,:ssi@l

where p; is the probability of selecting a,,; , q; is the prob-
ability of selecting a5, and r; is the probability of select-
ing a,3. As in Subsection 3.C, s; is a random number
drawn from the uniform probability distribution. The
three probabilities are found by solving

Re(a,;) Re(a,;) Re(a,s) Re(ans)]/p;
Im(a;) | = | Im(a,;) Im(a,) Im(a,s)|| q:],
1 1 1 1 r;

where a,; is the desired complex value that is encoded.
For quantized SLM’s that have more than three modula-
tion values, the PRE algorithm is developed by using Egs.
(5) and (6) with various groups of three modulation values
to encode various regions of the complex plane.

E. Encoding Algorithms for Quantized Phase-Only
Spatial Light Modulators

Figure 6 illustrates how the individual MDE and PRE al-
gorithms are combined into the MD-PRE and modified
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MD-PRE (mMD-PRE) algorithms for both tri-phase and
quad-phase modulation characteristics.

For MDE on tri-phase SLM’s, the complex plane is di-
vided into three decision regions [Fig. 6(a)], and desired
values in a particular region are mapped to the modula-
tion value in that region. For PRE on tri-phase SLM’s
[Fig. 6(b)], the modulation values used in Egs. (5) and (6)
are a,,; = 1, a,,, = exp(j27/3), and a,,3 = exp(—j27/3).
Values in the interior of the triangle in Fig. 6(b) can be
pseudorandom encoded, and the inscribed circle (dashed
curve), which is of radius y = 0.5, represents the fully
complex range for this PRE algorithm. The MD-PRE
blended algorithm uses PRE for desired values on and in-
side the triangle of Fig. 6(b), and it uses the MDE decision
regions of Fig. 6(a) for values outside the triangle. The
PRE and MDE regions for the blended algorithms are la-
beled in Fig. 6(c).

As in Fig. 1(b), MD-PRE can be modified to the mMD-
PRE algorithm by mapping desired values that are out-
side the PRE range to the closest values on the boundary
of the PRE range. Then the mapped value is encoded by
the PRE algorithm. We will refer to the mapping of val-
ues by this prescription as modified MDE (mMDE). The
mMDE regions are identified in Fig. 6(d). The regions
identified as MDE in Fig. 6(d) are also encoded by the
mMDE prescription; however, mMDE for these regions is
identical with MDE.

The mMD-PRE for the quad-phase SLM is developed in
a similar manner to that described for tri-phase encoding.
Figures 6(e)-6(h) illustrate the corresponding succession
of steps for the quad-phase SLM. Note that for the quad-
phase PRE algorithm the fully complex range becomes y

(b)
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= 172, as indicated by the dashed curve in Fig. 6(f).
Also note that Fig. 6(f) distinguishes between two regions
in the encoding range of the PRE algorithm. For each re-
gion a tri-phase PRE algorithm is used. If a,; is in region
I, then it is encoded by using the modulation values a,,;
= 1, a,, =J, and a,,3 = —1, and if a,; is in region II,
then it is encoded by using a,,; = 1, a,,4 = —Jj, and a3
~1. The encoding formula can be written as

1 if0$3i<pi
xj ifpiss;<l-ry

-1 ifl-r=ss=<1

V)]

a; =

where in the second line j is used if a,; is in region I and
—j is used if a,; is in region II. The values of probability
used in Eq. (7) are determined by solving the equation

Re(a,;) 1 0 -1}/p,
Im(a,;){ ={0 *1 O0}|aq;], €)]
1 1 1 1)\

where +1 is used if a,; is in region I and —1 is used if a,;
is in region II.

F. Encoding Algorithms for Quantized Biamplitude
Phase Spatial Light Modulators

Figure 7 identifies the various encoding regions for PRE
and MDE with the addition of the modulation value a,,
= (. For both tri-phase MDE [Fig. 7(a)] and quad-phase
MDE [Fig. 7(c)], one additional decision region is formed.
For PRE on the tri-phase SLM, there are three regions,
each of which is pseudorandom encoded by using the

MDE
mMDE
mMDE MDE
mMDE
MDE
()]

MDE

®

mMD-PRE

MD-PRE

Fig. 6. Tlustration of the individual MDE and PRE algorithms together with their minimum-distance and modified-minimum-distance
blendings for [(a)-(d)] tri-phase and [(e)—(h)] quad-phase phase-only modulation characteristics. Parts (a) and (e) identify the decision
regions for MDE. Parts (b) and (f) show the encoding ranges for the PRE algorithms together with the fully complex ranges, which are
bounded by each dashed circle. Part (f) also indicates that there are two regions. Each triangular region is encoded by Eqs. (7) and (8)
with use of the three modulation values at the corners of the corresponding regions.
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Fig. 7. Illustration of the individual MDE and PRE algorithms
for bi-amplitude modulation characteristics: (a) MDE and (b}
PRE for tri-phase SLM’s; (¢) MDE and (d) PRE for quad-phase
SLM’s. Parts (a) and (c) show the decision regions for the MDE
algorithms. Parts (b) and (d) show the individual subregions
that are each encoded by using ternary PRE. The striped areas
of region IV in (a) are outside the encoding range for PRE in (b).
Therefore the MD-PRE blending of (a) and (b) requires that val-
ues in the striped areas be mapped to zero according to the MDE
algorithm.

modulation values a,,; = 0 and two of the three other
values a,y, a,2, and a,s in Fig. 7(b). Similarly, for
PRE with a quad-phase SLM there are four regions, each
of which is pseudorandom encoded by using Egs. (5) and
(6) with a,,q and two of the four other values a,;, a2,
a,s, and a4 in Fig. 7(d).

Even though the PRE algorithms used for the quan-
tized bi-amplitude SLM’s are different from those used for
the quantized phase-only SLM’s, the encoding ranges of
the PRE algorithms are identical. This leads to the PRE
and MDE regions for the blended algorithms being iden-
tical with those for the phase-only SLM’s [Figs. 6(c), 6(d),
6(g), and 6(h)], with one exception [Fig. 6(c)]. From Figs.
7(c) and 7(d), it can be seen that MDE region V is entirely
contained inside the PRE encoding range, and thus this
region is always encoded by PRE and is never encoded by
MDE. Therefore Figs. 6(g) and 6(h) apply to the bi-
amplitude SLM as well. However, Figs. 7(a) and 7(b)
show that some of MDE region IV (the three striped re-
gions) are outside the encoding range for PRE. Therefore
the three striped regions should be added onto Fig. 6(c) to
properly describe the encoding regions for MD-PRE for
the tri-phase bi-amplitude SLM. For mMD-PRE the
mMDE regions take precedence over the MDE IV regions,
and thus Fig. 6(d) describes the encoding range for both
the phase-only and the bi-amplitude SLM.

In passing, we note that for MD-PRE on tri-phase bi-
amplitude SLM’s there is a dramatic difference between
encoding a value in the PRE region and in the MDE IV
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regions that are outside the PRE region. Desired values
in the PRE region are mapped on a percentage basis to
one of the three closest SLM values, while values in the
MDE IV region are always mapped to zero. This algo-
rithm has led to the somewhat paradoxical result that
some values further from zero are mapped to zero more
frequently than other values that are closer to zero.

G. Specification of the Desired Function To Be Encoded
The desired function that is encoded is written in the
form

7

a,(x,y) = >, exp(j6y)exp(j2mkx)

7
X 12 exp(j6;)exp(j27ly), ©
=1

where 6, are the phases specified by Krackhardt et al. for
a maximum-diffraction-efficiency, phase-only 1 X 7 spot
array.?® Equation (9), which is periodic, is sampled to
produce a 82 X 32 unit cell of complex values, and from
this a 4 X 4 array of cells is adjoined to produce the array
of 128 X 128 desired complex values.

Neither PRE nor blended encoding requires that the
desired function be designed by optimization. Nor were
optimized functions encoded in Refs. 14 and 15. How-
ever, it is useful to use Eq. (9) because this function and
its performance are well-known and because it provides
information that relates the performance of encoding pro-
cedures to the performance of optimized designs.

Since Eq. (9) is periodic, one might also wonder
whether periodic functions have a performance advantage
over nonperiodic functions. Reference 15 is the only
study of blended algorithms that uses a nonperiodic func-
tion. However, several of our studies on PRE alone have
identified that the SBWP of the desired function, the dif-
fraction efficiency of the desired function [see Eq. (26) in
Ref. 22] and the mean squared distance between the de-
sired function values and the modulation values critically
control performance.?? References 8, 16, and 18, which
include simulated and experimental demonstrations us-
ing nonperiodic functions, and Ref. 22, which uses peri-
odic functions, all demonstrate similar dependence on
these parameters that define the properties of the func-
tion.

The encoding of the optimized function suggests that,
in addition to design, the encoding algorithms could also
be used to remap an optimized design from one type of
modulation characteristic into another. A specific appli-
cation of remapping would be to use the encoding algo-
rithms for quantized modulation to quantize a
continuous-value phase-only diffractive optical element
design. :

H. Simulation Procedures and Definition of the
Performance Metrics

The far-field diffracted intensity patterns are simulated
by fast-Fourier-transforming the encoded values a; and
then squaring the magnitude for each of the pseudoran-
dom and nonrandom encodings. For all metrics except
diffraction efficiency, the 128 X 128 array is placed in a
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512 X 512 array of zeros that is fast Fourier transformed.
For diffraction efficiency the 128 X 128 array is fast Fou-
rier transformed directly. The diffraction efficiency 7 is
simply the sum of the intensities of the 49 spots divided
by the sum of all intensities in the 128 X 128 diffraction
pattern. For bi-amplitude modulation characteristics
the energy absorption in the modulator plane also needs
to be accounted for.!* Therefore the ratio of desired en-
ergy to total energy in the diffraction pattern is multi-
plied by the ratio of unity-transmittance pixels to the to-
tal number of SLM pixels. Nonuniformity of the peaks
(NU) is calculated as the standard deviation of the peak
intensities of the 49 spots divided by the average spot in-
tensity. Signal-to-peak-noise ratio (SPR) is the ratio of
the average peak intensity of the spots to the maximum
noise peak of the 512 X 512 pattern, excluding the square
region that contains the 7 X 7 spot array. Signal-to-
noise ratio (SNR) is the ratio of the average intensity of
the peak values of each of the 49 spots divided by the av-
erage intensity outside the square region containing the
7 X 7 spot array. SNR is reported for completeness and
to provide continuity with the results and the theory on
the performance of ternary PRE that was presented in
Ref. 22. However, in Section 4 we provide little discus-
sion of the SNR results because SNR does not well char-
acterize the noise in MDE and MD-PRE, which, rather
than being white, is localized to a small number of large
noise spikes. The calculation of the various metrics from
experimental measurements is described in Section 5.

In addition to describing the specific encoding algo-
rithms that are to be evaluated in this study, we hope
that our development of these algorithms may serve as
examples and suggest how blended encoding algorithms
can be developed for the myriad of possible modulation
characteristics.

4. SIMULATION RESULTS

This section compares the performance of PRE, MDE,
MDE-PRE, and mMDE-PRE algorithms for wvarious
modulation characteristics in terms of SPR, NU, and # as
a function of the blending/scaling parameter y and also at
selected optimal values of y*.

For each encoding performed in this study, the identi-
cal desired function a,; and the 128 X 128 array of uni-
form random numbers s; are used. Using the same ran-
dom numbers is important because each new set of
random numbers used in encoding can affect the value of
the performance metrics. However, even using an iden-
tical array of random numbers still causes fluctuations in
the performance curves. These fluctuations can be re-
duced by performing the same encoding algorithm mul-
tiple times with several sets of random numbers and then
averaging together the performance metrics.® However,
the trends in the performance curves are adequately evi-
dent for the purpose of comparing the performance ad-
vantages of one algorithm with those of another.

The detailed performance results for the various SLM
types are reported below. The first set of results is for
continuous SLM’s. While there is no distinction between
MD-PRE and mMDE-PRE for these characteristics, the
results for continuous SLM’s provide the clearest demon-
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stration of the improvements that are due to blending and
they also provide a baseline against which to compare the
performance when the phase characteristic is coarsely
quantized.

A. Results for Continuous Spatial Light Modulators .

Figure 8 shows the performance as a function of vy for the
encoding of the identical function on phase-only and bi-
amplitude phase SLM’s. MD-PRE for both SLM types is
presented together with MDE for the bi-amplitude SLM
(which for y = « is equivalent to MDE for the phase-only
SLM). For each SPR and NU curve, there is a particular
value of 1 < y < « for which the performance metric is
optimal. The performance metrics for each algorithm
when SPR is maximum are reported in Table 1. Since
NU is fairly flat in the vicinity of peak SPR, these addi-
tional data are not presented. Comparing the curves and

SPR

NU (%)

g
& 60 =—— MD-PRE bi-amp
= = MD-PRE phase-only
—— MDE bi-amp
40 L§ T AR | 1 ML
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Y

Fig. 8. Simulated performance of blended algorithms as a func-
tion of the blending parameter for phase-only and bi-amplitude
phase modulation characteristics.

Table 1. Best Performance of Encoding
Algorithms for Continuous SLM’s

Continuous Simulation (Experiment)
Algorithm v* 7 (%) SNR SPR NU (%)
Phase-only

PRE 1.00 44(44) 254 (224) 17(13) 10(15)

MD-PRE 140 75(70) 977 (743)  63(43) 6(15)

MDE % 96(94) 2263(2135) 20(15)  19(23)
Bi-amplitude

PRE 1.00 43 685 37 4

MD-PRE 125 65 1524 93 4

MDE 120 88 7093 20 10
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Fig. 9. Simulated far-field intensity patterns of the tri-phase phase-only SLM for (a) PRE, (b) mMD-PRE, (c) MD-PRE, and (d) MDE.
The images show intensity with a linear gray scale. To bring out the background noise, the maximum gray-scale value (full white) is

30% of the average intensity of the 49 spots.

table entries with each other, we can also see that MD-
PRE for bi-amplitude SLM’s outperforms MD-PRE for
phase-only SLM’s. Both algorithms outperform MDE in
SPR and NU. Clearly, MDE produces greater diffraction

efficiency; however, the diffraction efficiency for the MD-
PRE algorithms can exceed 80% (near y = 1.6) and still
outperform the best MDE in terms of SPR and NU. The
trends in these performance curves are similar to that ob-
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served in Ref 14, where a nonoptimized, lower-
diffraction-efficiency function was encoded.

B. Results for Quantized Phase-Only Spatial Light
Modulators
The characteristics of the various algorithms and their in-
fluence on performance can be appreciated by considering
the simulated diffraction patterns of Fig. 9. The values
of y* used for each type of encoding are reported in Table
2 together with the tabulated performance metrics. The
gray scale in Fig. 9 has been set to bring out the structure
of the background noise. The background for PRE is a
relatively bright speckle pattern [Fig. 9(a)], while the
background for MDE is a much different pattern of noise
spikes at harmonically related spatial frequencies [Fig.
9(d)]. The background for MD-PRE [Fig. 9(c)] also con-
tains noise spikes having a similar spatial distribution of
noise to that for MDE but that are not as bright as those
for MDE. There is also a speckle pattern that is quite
faint. The background for mMD-PRE [Fig. 9(b)] contains
a speckle background that is slightly brighter than the
speckle pattern for MD-PRE but that is much less bright
than the patterned noise spikes for MD-PRE. There are
even patterned noise spikes in Fig. 9(b), but they are faint
and obscured to a large degree by the speckle pattern.
Figure 9 has been used to show how blending trades off
between the background noise properties of PRE and
MDE. The cross sections in Fig. 10 of the intensity pat-
terns allow a more quantitative comparison of the perfor-
mance of the four encoding algorithms. Figure 10 makes
clear that it is the appearance of a few very large noise
spikes that leads to the low values of SPR for MDE and
MD-PRE. Figure 10 also provides a visual comparison of
uniformity of the spot arrays. While the mMD-PRE is
the most uniform of the four cross sections, the differ-
ences are best appreciated by considering the values of
NU reported in Table 2 for the uniformity of all 49 spots.
The same visual and qualitative distinctions for the four
diffraction patterns can be made for encoding with the
more finely quantized modulation characteristics [Figs.
4(c), 4(e), and 4(f)] considered in this study. Since noise
spikes and the nonuniformity are generally lower, these
differences are harder to see and they provide no addi-
tional insight into the properties of the encoding algo-
rithms. For this reason the algorithms are compared in
terms of their performance metrics in the remainder of
the paper.

The performance of the blended encoding algorithms as
a function of yis given in Fig. 11. While the curves are
noisier than the continuous curves in Fig. 8, it can be seen
that for each SPR curve the maximum value is found for a
specific value of y* corresponding to a specific blending of
PRE and MDE (or mMDE). We have never found a case
in which either pure PRE or pure MDE produced a better
performance than the blended results. Similarly, for
each NU curve, the minimum value corresponds to a spe-
cific value of the blending parameter y*. Of most signifi-
cance to this study is that the mMD-PRE curves always
attain larger values of SPR and lower values of NU than
the corresponding MD-PRE curves. This is true despite
the fact that MD-PRE has the larger diffraction efficiency.
Rather than reporting the best SPR and the best NU,
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Table 2. Best Performance of Encoding
Algorithms for Phase-Only SLM’s

Phase-Only Simulation (Experiment)
Algorithm ¥* 7 (%) SNR SPR NU@®)
Tri-phase

PRE 0.50 11(1D) 40(37) 3(3) 20(23)
MD-PRE 0.80 32(32) 147(152) 2(6) 15(18)
mMD-PRE 095 31(28) 147(130) 119 12(15)
MDE ® 66(57) 411(429) (1) 22(25)
Quad-phase
PRE 0.71 22(18) 93(77) 8(6) 11(14)
MD-PRE 0.95 40(39) 220(196)  13(7) 11(15)
mMD-PRE 111 47(45) 290(274) 22(18) 8(14)
MDE 78(77)  1071(949) A7) 21(25)

Jﬁummwpm
S 11 I

O 111111 J

0

Fig. 10. Cross sections of the far-field intensity patterns of the
tri-phase phase-only SLM from Fig. 9. The cross section is
taken across the diagonal of the 7 X 7 spot array and through
the optical axis (indicated by the dashed vertical line). The
traces are normalized so that the average intensity of each spot
array is of identical vertical length on each plot.

Table 2 reports the performance for the best overall com-
bination of SPR and NU (as based on empirical judgment
rather than cost function). The selection of the best
value of y* is not especially critical because NU (or SPR)
is slowly varying near its local minimum (or maximum).

C. Results for Quantized Biamplitude Phase Spatial
Light Modulators

Figure 12 and Table 3 report these results. Similar
trends to those noted for the quantized phase-only SLM’s
are observed for the biamplitude SLM’s. Once again
each curve demonstrates that there is a particular degree
of blending that produces the best fidelity as measured by
SPR or NU. Also, the largest value of SPR for mMD-PRE
is always greater than the largest value of SPR for MD-
PRE. Similarly, the smallest value of NU for mMD-PRE
is always smaller than the smallest value of NU for MD-
PRE. The diffraction efficiency for the tri-phase encod-
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ings shows that the MD-PRE actually has lower diffrac-
tion efficiency than mMD-PRE for y < 1. This reflects
the fact that many of the values in the MDE region IV
[specifically, the striped regions of Fig. 7(a)]l are being
mapped to zero.
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Table 3. Best Performance of Encoding
Algorithms for Bi-Amplitude SLM’s

25-
20-

ey

Bi-Amplitude Simulation
Algorithm y* 7 (%) SNR SPR NU (%)
Tri-phase

PRE 0.50 11 88 9 14
mMD-PRE 0.90 30 170 14 10
MD-PRE 1.30 50 309 1 12
MDE 1.50 58 366 1 13
Quad-phase
PRE 0.71 22 197 14 10
mMD-PRE 1.20 51 443 37 8
MD-PRE 1.20 59 606 9 10
MDE 1.20 65 938 5 11
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Fig. 11. Simulated performance of blended algorithms as a
function of the blending parameter for quantized-phase phase-
only modulation characteristics.
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Fig. 12. Simulated performance of blended algorithms as a
function of the blending parameter for quantized-phase bi-
amplitude phase modulation characteristics.

Comparing the quantized biamplitude results with the
quantized phase-only results shows that the extra zero-
valued state markedly improves the fidelity measures.
The diffraction efficiency curves in Figs. 11 and 12 are es-
sentially identical as a function of y except for the tri-
phase MD-PRE curve [which differs because region IV in
Fig. 7(a) extends outside the PRE region]. Also, the dif-
fraction efficiency performance reported in Tables 2 and 3
depends directly on the value of y* required to optimize
the fidelity metrics. Therefore the diffraction efficiency
of blended algorithms on phase-only SLM’s turns out
sometimes to be higher and sometimes to be lower than
the efficiency of blended algorithms on biamplitude
SLM’s.

5. EXPERIMENTAL RESULTS

A. Spatial Light Modulator Characterization and
Experimental Procedures

A Boulder Nonlinear Systems Inc. (BNS) 128 X 128-
pixel reflective SLM is used in our experiments. BNS
normally sells this SLM with ferroelectric liquid crystal
(LC). On request they will fill the cell with parallel
aligned nematic LC, as was done for us and other groups
aswell.?? The relation between voltage and phase modu-
lation has been determined by two methods. One is an
interferometric method based on Young’s fringes.>® The
second uses the diffraction pattern of a random bi-phase
distribution.?

For a perfect device the two methods should lead to the
same phase characteristic; however, variations in phase
response are known to occur across the device.? We find
experimentally that using the results from the random bi-
phase method for phases up to 7 and from the interfero-
metric method for the range #—2m gives the best corre-
spondence between the actual and an ideal phase-only
SLM. For a frequency-doubled Nd-YVO, laser (532 nm),
we found that a 27 range is produced with 80 electrically
addressable gray-scale levels. However, because of the
nonlinear transfer curve that is typical for LC SLM’s, the
phase levels are not equally spaced.

For the measurement of the spot arrays, the linearly
polarized laser beam is spatially filtered and collimated.
The reflective SLM is uniformly illuminated, with lin-
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early polarized light oriented with the extraordinary axis
of the LC. The light reflected from the SLM is collected
by a Fourier transform lens, and the resulting Fraunhofer
diffraction pattern (specifically the zero diffraction order
of the SLM grating) is recorded with a Cohu 4915 CCD
camera and attached National Instruments black-and-
white frame grabber.

After any fixed background noise is subtracted off, the
performance metrics are calculated as described in Sub-
section 2.H with the following exceptions: A noticeable
spot, which is due to reflections from the cover glass of the
SLM, is always present on the optical axis. It is omitted
from all the calculations. The average background noise
level is used in calculating not only SNR but also diffrac-
tion efficiency 7 The average noise level is determined
by adding the intensity in several regions (which excludes
the undesired on-axis spot and which covers approxi-
mately 40% of the total area in the zero order) and then
dividing by the area of these regions. The average of the
maximum intensity of each of the desired spots is also cal-
culated, and the ratio of the two averages gives SNR.
The peak noise spike is found in the identical region that
is used for the average noise level calculation. This value
of peak noise is used in the calculation of SPR. For dif-
fraction efficiency calculations the average noise level is
multiplied by the total area of the zero-order region to es-
timate the noise energy. This, together with the energy
in the desired spots, is considered to be the total energy
for purposes of comparing the diffraction efficiency of the
experiment with that of the theory.

While calculating efficiency in the above way does pro-
vide good agreement between experiment and theory, it is
not representative of the physically true efficiency of the
BNS SLM. What we find by using a power meter to mea-
sure incident and reflected light from the SLM (with all
pixels set to gray-scale level 0) is that 1.7% of the energy
appears in the on-axis spot, ~5.7% of the energy appears
in all diffraction orders (as measured by reimaging the
SLM onto the detector of the power meter), and a surpris-
ingly low 0.9% of the energy appears in the zero-order dif-
fraction pattern.

These measurements are aided by a slight lack of par-
allelism between some of the surfaces in the SLM, which
causes the unmodulated spot from the cover glass of the
SLM to become spatially resolved from the modulated
spot at large distances from the SLM. When a linear
phase ramp is programmed on the SLM, we observe that
the modulated spot is translated with 95% of its energy
present in the translated position and essentially no en-
ergy present in the original position. In the higher or-
ders there is also a translated spot, but the unmodulated
spot is undetectable. This leads to the conclusion that
the unmodulated spot is from a continuous surface that
has no spatially varying modulation. That is to say,
there is no additional contribution to the unmodulated
spot from the dead zones between the pixzels. This is fur-
ther supported by images of the SLM in the phase-only
configuration that show dark lines between the pixels.
However, in the amplitude-modulating configuration,
when viewed through crossed polarizers, the dead zones
are bright, which shows that they rotate the polarization.

Also, the losses cannot be attributed entirely to pixel
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fill factor. BNS quotes the pixel fill factor of a typical de-
vice as 60%, and we measured a 54% fill factor when
viewing images of the SLM under incoherent illumina-
tion. Fill factors in this range indicate that between 29%
and 36% of the modulated reflection should appear in the
zero order. Therefore we conclude that there are losses
of more than 1 order of magnitude in the LC cell.

B. Performance of the Encodings

The phase-only designs summarized in Tables 1 and 2 are
implemented with the phase-only SLM, and the mea-
sured performance is reported in parentheses in the
tables. The measured diffraction efficiencies and SNR
are usually quite close, though somewhat less than the
simulated values. There are larger deviations between
the simulated and measured SPR and NU, with mea-
sured SPR usually being smaller and measured NU usu-
ally being larger than the simulated values. The mea-
sured values still demonstrate the advantages of the
modified blended algorithm over the conventional blended
algorithm, even though these differences are more diffi-
cult to see. In terms of SPR, for the tri-phase SLM the
measured differences for the two types of blending are
much less than predicted. The differences are much
more pronounced for the quad-phase SLM. The situation
is reversed for NU. There appears to be a floor to NU of
14%, and so for the quad-phase SLM, which is predicted
to produce more uniform patterns, NU is only slightly dif-
ferent between the two blended algorithms. However,
for the tri-phase SLM, NU is much larger for PRE and
MDE, and this increase in NU is clearly seen in the mea-
surements.

Since the experimental and simulated measurements
of performance differ, it could be the case that the optimal
performance occurs for different values of y. This is ex-
plored for the case of mMD-PRE on a quad-phase phase-
only SLM (Fig. 13). The performance measurements are
compared with the simulated results (originally plotted in
Fig. 11). Figure 13 shows that the measured diffraction
efficiency is somewhat lower than the simulated, the mea-
sured NU is higher than the simulated, and the measured
SPR is usually lower than the simulated. The shape of
each measured curve is quite similar, which suggests that
for our experimental SLM the simulated value of y* will
be reasonably close to the optimal value of vy for experi-
mental settings. While much closer agreement between
measurement and theory has been demonstrated with
fixed-pattern diffractive optics,3! we believe that these re-
sults are in quite close agreement for programmable
SLM’s, which suffer from inaccuracies in setting the SLM
phase identically on each pixel.?® Also, interference ef-
fects that are due to multiple reflections from the SLM
layers and other optical surfaces in the optical system can
influence the measurements, especially in the case of NU
measurements.3!

One other possible source of discrepancy between
theory and experiment for the NU measurements is the
nonuniformity introduced by the frequency roll-off that is
due to the subapertures of the SLM pixels. Since the de-
sired portion of the diffraction pattern is along a diagonal,
the intensity roll-off is proportional to sinc*(x). We find
that the closest correspondence between the simulated
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Fig. 13. Comparison between theory (thick solid curve) and ex-
periment (thin solid curve and dots) of the performance of mMD-
PRE on quad-phase phase-only SLM’s. The dashed curve on the
plots of NU shows the theory with the frequency response roll-off
(which is to the aperture of the SLM pixels) taken into account.

and the experimentally measured NU occurs if a square
pixel aperture of 56% fill factor is used to simulate the
pixel-induced rolloff of the originally simulated diffraction
pattern. For the particular design considered here, the
intensity at the spot location furthest from the optical
axis [i.e., the (7,7) position] is reduced by 16% from the
intensity at the spot that is closest to the optical axis.
We find that recalculating NU with the additional roll-off
would have increased NU by only 0.5%-1.5% over the re-
sults reported in Tables 1 and 2 for phase-only and quan-
tized phase-only SLM’s. Similarly, recalculated values of
NU are plotted in Fig. 13 (dashed curve).3> While theory
and experiment are brought into closer agreement, the
other factors considered above still appear to be the domi-
nant sources of error.

6. CONCLUSIONS

A. Summary of Results

We have described and compared two possible ways of
combining minimum-distance encoding (MDE) with pseu-
dorandom encoding (PRE). The new modified approach
maps the desired value to the closest value that can be
achieved by pseudorandom encoding. Simulations with
four types of coarsely quantized SLM characteristics
clearly show that the modified blended algorithm mMD-
PRE outperforms the conventional algorithm MD-PRE in
fidelity as measured by peak levels of background noise
across the full SBWP of the SLM and by the uniformity of
the desired spot array.

Blending by either approach leads to significant im-
provements in performance over that originally reported
in Ref. 24 for PRE and MDE used individually. Espe-
cially significant is the 2X-8X increase in diffraction ef-
ficiency over that with PRE alone as a result of blending.
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It is even possible to increase diffraction efficiency over
the values reported for best fidelity (i.e., the result for y*)
by trading off uniformity and SPR as controlled by the
scaling parameter .

The experimentally implemented designs always
showed that the modified blending outperformed the con-
ventional blending, though the differences are not always
as evident in all cases studied. This is attributed in large
part to errors in controlling the phase of each SLM pixel
identically. However, the measured diffraction patterns
match the simulated diffraction patterns much more
closely than was previously possible by using an optically
addressed SLM in Ref. 22. The earlier SLM produced
undesired noise orders because of its nonlinear properties
and increased nonuniformity of the spot arrays because of
its limited resolution. With these limitations absent, the
spot arrays are more uniform and the background noise
orders are primarily associated with the encoding algo-
rithms and SLM quantization. A further desirable im-
provement in SLM’s would be reduction of the on-axis
spot that is due to reflections from the cover and the in-
terfaces of the SLM and that is accentuated by the low-
efficiency reflectance of modulated light. Even though
further improvements in SLM’s are desirable, these ex-
perimental results do demonstrate that the encoding al-
gorithms proposed here perform in a manner quite simi-
lar to the simulations, thus making the algorithms
suitable for use in real-time systems.

B. Implications for Future Research

While blended algorithms tend to improve the optical per-
formance of SLM-based systems over the unblended PRE
algorithms, there is additional overhead. Specifically, a
search is required to find the optimal scaling parameter
v*. At this time the only known way to perform this
search numerically involves repeated fast-Fourier-
transform-based simulations. Additional studies on en-
coding various functions could possibly lead to the devel-
opment of a knowledge base that would provide a good
a priori estimate of the optimal value y*. Alternatively,
it may be possible to develop theoretical models of the
performance of the encoding algorithms as a function of .
A third possibility would be the inclusion in the optical
system of an image sensor that records the far-field pat-
tern and evaluates the performance on line. This would
permit much faster evaluation and, as Fig. 13 illustrates,
the in situ measurements could be used to compensate for
the nonideal behavior and other vagaries of current
SLM’s.

In Section 4 we briefly considered trading off fidelity to
increase diffraction efficiency. We achieved this by in-
creasing the value of the blending parameter to increase
the amount of MDE in the mMD-PRE algorithm. Addi-
tional trade-offs that favor diffraction efficiency can be en-
visioned by blending the conventional and modified MD-
PRE algorithms. The proposed blending could be
geometrically interpreted (see Fig. 1) as a mapping from
the desired value a, to a point on the exterior of the PRE
(striped) region. The mapping can be considered a linear
combination of the modified and conventional minimum-
distance mappings. The actual implementation could be
performed in at least two ways: (1) The value/point that




2438  J. Opt. Soc. Am. A/Vol. 16, No. 10/October 1999

a, is mapped to is pseudorandom encoded. (2) The modi-
fied and conventional encodings are randomly selected so
that the value that a, is mapped to is realized on average.
Further analysis is required to determine if these ap-
proaches actually provide a second trade-off parameter in
addition to vy or if one or both of these are alternative in-
terpretations of mMD-PRE. Certainly, such studies may
prove valuable, since Figs. 11 and 12 show that for the
same value of vy the diffraction efficiency for MD-PRE is as
much as 0.15 greater than the efficiency for mMD-PRE,
especially when diffraction efficiency has a much higher
premium than fidelity.

In conclusion, the performance of Fourier transform ho-
lograms from coarsely quantized SLM’s can be signifi-
cantly improved over minimum-distance, pseudorandom,
and conventional blended encoding by instead using algo-
rithms that blend pseudorandom encoding with modified
minimum-distance encoding. While the new blended al-
gorithm does not outperform blended algorithms for
continuous-value phase-only SLM’s, it may well be ad-
equate to use coarse quantized SLM’s in place of continu-
ous SLM’s in a number of applications. These algorithms
may be especially useful for SLM developers because they
permit early testing and evaluation with prototype de-
vices that have greatly simplified and much less costly
electrical addressing circuitry.
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The influence that is due to roll-off may at first seem to be
surprisingly small, but calculating the effect of this roll-off
on the nonuniformity/standard deviation of the ideally uni-
form spot array gives NU = 4.2%. The small influence of
the rolioff on NU is further explained by the fact that the
simulated values of NU are generally greater than 4% and
that standard deviations, rather than being additive, add
as the square root of the sum of the squares.




8412 Langmuir 1999, 15, 8412—8420

Reductive Dehalogenation of Trichloroethylene with
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Mechanistic aspects of the reductive dehalogenation of trichloroethylene using zerovalent iron are studied
with three different surface characterization techniques. These include scanning electron microscopy,
surface profilometry, and atomic force microscopy. It was found that the pretreatment of an iron surface
by chloride ions causes enhancement in the initial degradation rates. This enhancement was attributed
to the increased roughness of the iron surface due to crevice corrosion obtained by pretreatment. The
results indicate that the “fractional active site concentration” for the reactive sorption of trichloroethylene
is related to the number of defects/abnormalities present on the surface of the iron. This was elucidated
with the help of atomic force microscopy. Two possible mechanisms include (1) a direct hydrogenation in
the presence of defects acting as catalyst and (2) an enhancement due to the two electrochemical cells
operating in proximity to each other. The result of this study has potential for further research to achieve
an increase in the reaction rates by surface modifications in a practical scenario.

1. Introduction

Since the original studies by Gillham and O’'Hannesin?
who proposed the use of reductive dehalogenation reaction
for environmental remediation, several studies have been
published which deal with the reaction of trichloroethylene
(TCE) with zerovalent iron. Matheson and Tratnyek® were
the first to report a detailed kinetic and mechanistic study
of this reaction with several contaminants of concern. It
is well-known now that though these reactions are faster
compared to the natural biotic and abiotic processes, the
rates are nonetheless too low to be feasible for ex situ
applications. Therefore, the focus so far in this area is
directed toward the in situ applications. Both in situ
reactive barriers and above ground reactors have been
developed for this purpose. Several test installations have
already been completed at contaminated sites, and more
are being planned.4~” However, little information is
available on the exact mechanism of the reductive
dehalogenation using zerovalent iron. The effective design
and operation of systems involving zerovalent metals
would be greatly improved by a more detailed, process-
level understanding of the mechanism by which these
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contaminants degrade. Furthermore, improving the rates
of these processes would also make the ex situ applications
feasible and reduce the remediation time and would also
be cost-effective. In this paper, an attempt is made to gain
an understanding of the surface phenomena on the surface
of iron during the reductive dehalogenation of TCE with
the ultimate goal of increasing the rate of reaction. Atomic
force microscopy (AFM), surface profilometry, and scan-
ning electron microscopy (SEM) were used to analyze the
surface features of the iron. In addition, the relation
between the metal dissolution process occurring during
dehalogenation of chlorinated organics to the classical
crevice corrosion mechanism of iron in the presence of
chloride ion is described. Only recently, promising use of
AFM was suggested by Boronina et al.® for such envi-
ronmental applications. In this study, AFM is also found
to be important for the indication of crevice corrosion, as
will be discussed later on.

2. Background. Role of the Metallic Surface

2.1. Role of the Metal Surface on Electron Trans-
fer. Although considerable advancement has been made
recently in identifying the product distribution,®~! to date
the exact surface mechanism for TCE degradation by iron
is not known. There is general agreement that electron
transfer at the metal surface isrequired. This observation
was used by Gotpagar et al.!?2 and Boronina et al.’® to
develop the macroscopic model. Recent publications®5:13-18
have repeatedly emphasized the importance of the metal
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surface area in the process. It was also found that the
presence of carbonate- or oxide-forming species in the
water leads to an inert layer of metal oxide or metal
carbonate forming on the metal surface. Thislayer greatly
reduces the overall reaction rate.’8-2! Thus, it is quite
clear that the metallic surface is the controlling factor in
TCE degradation.

Current research efforts are directed toward obtaining
enhancements in reaction rates. Bimetallic complexes
have been used to generate higher chlorinated organic
degradation rates.??=% In particular, Li and Klabunde have
shown that doping various zinc samples with palladium,
silver, and nickel resulted in much higher pseudo-first-
order degradation rates, with some systems showing as
much as 150 times higher values. The standard oxidation—
reduction potentials of these metals relative to a hydrogen
electrode are +0.987 (Pd), +0.799 (Ag), —0.250 (Ni), —0.440
(Fe), and —0.763 (Zn). For each metal pair, the metal with
the lower potential is preferentially dissolved, releasing
electrons, e.g., the zinc dissolution in the Pd—Zn pair.

When iron is used, the chemistry at the metal surface
during a dehalogenation can be similar to that of classical
crevice corrosion of steel in the presence of chloride ions.26
In the presence of oxygen, iron metal is oxidized, releasing
electrons, which can be used in the reduction reaction of
water plus oxygen, generating hydroxide ions. Depletion
of oxygen in crevices leads to an excess of positive charges
in the local solution, causing the diffusion of chloride ions
into these spaces and increasing the metal dissolution.
Insoluble metal hydroxides can form and coat the exterior
surface, reducing the rate of metal dissolution.

The presence of a second metal electropositive relative
to iron would provide surfaces that might exhibit less
fouling and could continue to supply electrons to a complete
oxidation—reduction process cycle. Furthermore, the
presence of a second, nonreactive metal would accelerate
the dissolution of the reactive metal in crevices. This
surface area affect would add to the faster chloride ion
migration within the crevices. For example, Li and
Klabunde?® showed that more porous zinc was formed
during their degradations. In their case, the second
electropositive metal could have accelerated the process
both by providing a nonfouling surface for reduction
reactions and by promoting crevice formation in the zinc-
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rich areas of the material (enhanced via the chloride ion
diffusion process). Surface Fe?" has been shown to play
a very important role in the degradation of chlorinated
organics.

The decrease in the reaction rate with time for zerova-
lent iron systems may be due to changes in the iron surface
morphology. For example, the formation of insoluble iron
hydroxides could foul the surface, reducing the reduction
process and slowing the development of crevices. One
approach reported in this area was the use of bimetallic
complexes.?> Matheson and Tratnyek?® have argued that
commonly used bimetallic systems include a hydrogena-
tion catalyst such as Ni or Pd that can further enhance
the rate. Although the results obtained with such bime-
tallic systems seem encouraging, the enhanced degrada-
tion rates have only been studied for short periods of time.
The outer layer of these materials are quickly covered
with iron oxides,?227.28 thus causing rate reduction.

Another new approach for iron surface (without the use
of bimetallic systems) regeneration is the use of ultra-
sound. This is confirmed by a recently published study,?
which observed overall rate enhancement by a factor of
40 for dechlorination of CCly by zerovalent iron, in the
presence of ultrasound waves. The reason for this en-
hancement was attributed to the continuous cleaning and
activation of the Fe® surface by ultrasound waves, and
the enhanced rates of mass transport resulting from
cavitation. Characterization of the iron surface can thus
provide helpful insight into the mechanistic aspects of
the reaction, thereby potentially leading to the enhance-
ment of process effectiveness.

2.2. Sorption of TCE onto the Iron Surface. The
first step in the reaction of TCE reduction with Fe? is the
TCE sorption onto the iron surface. The sorption of TCE
takes place at two different sites—reactive sites and
nonreactive sites. Moreover, Burris et al.?® have shown
that the majority of this sorption takes place at the
nonreactive sites. It was shown that the adsorption of
TCE to iron follows the modified Langmuir type isotherm
given by

Chcr = kb(Crep/(1 + R(Clog)™) 6}

where C3y and C¥.g are the sorbed concentration (nmol/
g) and aqueous phase concentration (nmol/mi), respec-
tively. M, k, and b are generalized Langmuir coefficients.®
In our earlier published study,!” the concept of fractional
active site concentration was introduced to take into
account this difference in the sorption behavior. The
fractional active site concentration was defined as

Ag= C’?‘:}E/ C’%CE 2

where Ag is the fractional active site concentration and
Cior is the concentration of TCE on reactive sites (nmol/
g). It was shown that, with this concept of fractional active
site concentration, the model developed was able to predict
the degradation of TCE with time quite accurately over
the entire course of time. The equation indicating the
decline in the concentration of TCE in a simple two-phase
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Figure 1. Effect of fractional active site concentration on the
simulated TCE degradation profile with zerovalent iron.
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(solid—liquid) closed system with iron and TCE dissolved
in water was obtained as

dCltg
e

(RB(Crep (1 + R(CRee) MhintrinsicAsiMEe

VYL + (mp MEB(Crep ™ W(Vig(1 + k(CTep))

3

where mr. is the amount of iron used in the reaction system

(g), Vi is the volume of the aqueous phase used (L), and

Bintrinsic 18 the intrinsic value of the degradation rate

constant (h~1). The above equation is also consistent with

the observed zero-order reaction behavior at higher TCE

concentrations. The result of this modeling analysis®

indicated that the actual intrinsic degradation constant
and the observed value of the same are related by

kops = (RDASMp/3Vik; pringic 4)

where ks is the observed value of the degradation constant
(h~Y). It is instructive to note from the above equation
that even if the actual intrinsic degradation constant value
for the reaction of reductive dehalogenation is high, due
to the small coverage of the reactive sites, the overall
degradation constant value would be lowered to a great
extent (almost an order of magnitude). This is also clear
from Figure 1, which shows the effect of fractional active
site concentration on the calculated TCE degradation. As
expected, increasing the value of Ag causes an increase in
the degradation rate. The calculated curve for Ag = 0.4
fits the experimental data quite well (with &£ = 0.0207, b
= 882, and M = 0.655, values obtained from Burris et
al.3%), Thus, one should look at different ways to improve
the active surface area to explore the possible enhance-
ments in the degradation rates. The role of surface area
was further verificated by Li and Klabunde,? in which
ultrafine zinc coated with small amounts of palladium
gave the highest reactivity for carbon tetrachloride
dechlorination. As mentioned in the previous section, the
oxide layer present on the surface of iron was found to
slow the TCE degradation. In other words, the active
surface available for the TCE degradation is reduced as
time progresses. Continuous cleaning of the surface

(31) Gotpagar, J. Reductive Dehalogenation of Trichloroethylene
(TCE) with Zerovalent Iron: Reaction Mechanisms and Transport
Modeling. Ph.D. Dissertation, University of Kentucky, 1998.

Gotpagar et al.

(increasing Ag) was found to increase the degradation rate
considerably.?

It is clear that the low rates of dehalogenation obtained
with zerovalent iron are partly due to the abundance of
the nonreactive sorption and also due to the presence of
the oxide layer acting as an additional barrier for electron
transfer. It is not yet clear what exactly are the reactive
sites. We hypothesized that the defects/abnormalities
present on the surface of iron contribute to the reactive
sites. The basis for this hypothesis lies in the corrosion
literature. Review of the same indicated that these defects
cause increased dissolution of the metal in the corrosion
process, due to the phenomenon called localized corrosion.

Chloride pretreatment was used toincrease the number
of defects on the iron surface. This has two advantages.
First, it is widely accepted in the literature that pitting
is normally initiated by the aggressive anions such as
halide ions. Since pitting corrosion is greatly enhanced by
chlorideions,3?itis possible that the dechlorination might
favor further degradation if enough chloride accumulates.
Thus, the reaction can act as an autocatalytic process.
Second, in the presence of halide ions, the passive oxide
layers formed on the surface of iron are known to break
apart. At least two studies so far have indicated the
presence of such an effect.!>% However, due to very small
concentrations of the chloride ions present in the solutions,
such autocatalytic effects are not evident in the reaction
times studied so far. Moreover, though the driving force
for reaction is corrosion of the metal, increasing the
corrosion did not necessarily increase the degradation rate
due to the competing water dissociation reaction.!?
Therefore, the corrosion process that was important for
the dechlorination process was thought to be different in
nature.

In this paper, we explore the possibility of induced
pitting on the surface of iron as one of the techniques to
improve the rates of the degradation process. The phe-
nomenon of pitting corrosion is also seen in the scanning
electron micrographs ofiron samples observed over longer
reaction times. To corroborate this further, iron was
pretreated with chloride ions to introduce defects on the
surface, and its effect on the TCE degradation rate was
analyzed. These defects/pits present on the iron surface
were found to be the controlling factor in determining the
rate of reductive dehalogenation. We find that increasing
the number of these surface abnormalities increases the
rates considerably. Thus, the fractional active site con-
centration, as given by eq 2, is attributed to the number
of defects/pits present on the surface ofiron. The following
section outlines the detailed experimental procedure
adopted for the studies.

3. Experimental Section

8.1. Pretreatment of Iron. The electrolytic iron obtained
from Fisher Scientific (100 mesh, 150 um) was first treated with
1 M NaCl solution. Before treatment, the brine solution was
heated to 100 °C, as the enhanced pitting is reported at higher
temperatures.3 Various other factors such as chloride concen-
tration, pH of the solution, etc. influence the morphology of pits
formed. Lower pH values have been found to give consistently
higher pit formation even in the presence of small chloride
concentrations. In the current approach, no attempt was made
to treat the iron at lower pH, since at such low values loss of iron
through dissolution would also be increased. To increase pit

(32) Bardwell, J. A.; Fraser, J. W.; MacDugall, B.; Graham, M. J. J.
Electrochem. Soc. 1992, 139, 366.

(83) Johnson, T. L.; Fish, W.; Gorby, Y. A.; Tratnyek, P. G.J. Contam.
Hydrol. 1998, 29, 379.
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formation, higher chloride concentration (1 M) was used and the
iron samples were treated for 5 days.

The iron samples were washed with deoxygenated, deionized
water for 3—4 cycles to remove the traces of chloride on the
surface. This is a conservative approach because the presence of
this species on the surface would have a benign effect (auto-
catalytic) if any. The samples were then immediately soaked in
TCE solutions of known concentration, and placed on the rotary
shaker at 5 rpm. At selected times, the aqueous samples were
analyzed for TCE. The Hewlett-Packard 5890 Series II gas
chromatograph, with an attached MS 5971A quadruple mass
detector, was used for TCE analysis using a fused capillary
column, J&W Scientific, DB-624. The analytical method followed
the EPA method 624, with the following temperature program:
oven temperature of 35 °C (4 min) to 200 °C at 6 °C/min, hold
at 200 °C for 4 min. The carrier gas was zero-grade (high-purity)
helium with a flow rate of 7.5 mI/min, and the MS scan range
was m/z = 35—260 at 0.6 s/scan.

The chloride-treated iron samples were further characterized
using SEM, surface profilometry, and AFM techniques. Initial
AFM scans on Fisher electrolytic iron (100 mesh) showed that
the AFM tip always moves the iron grains. To prevent this, the
iron granules were embedded in a matrix of polyethylene (LDPE).
This approach was also unsuccessful because of movement of
grains. Therefore, iron chips were used in a separate experiment
to be analyzable by AFM. The chips (35 x 10 x 3 mm) were
obtained from hot rolled steel manufactured by Harbor Steel
Corp., Lexington, KY. The experimental procedure followed for
degradation studies was the same as that with Fisher iron.

8.2. Scanning Electron Microscopy. SEM provides an
effective method for the characterization of the surfaces of
samples. A narrow beam of electrons with kinetic energy in the
range of 0—25 kV is incident on the iron surface. The sample was
glued to the sample holder with colloidal graphite. The scanning
electron microscope was a S-2300 model from Hitachi, and the
images were recorded with 3000x magnification.

8.3. Surface Profilometric Studies. The surface profilo-
metry studies were performed using a WYKO NT-2000 scanning
white light interoferometry profiler. The WYKO is a noncontact
optical device capable of measuring surface heights between 4

and 1 mm. Smooth surfaces can be measured in the phase-
shifting interferometry (PSI) mode, while vertical-scanning
interferometry (VSI) allows the measurement of rough surfaces
and steps, without resorting to phase-unwrapping algorithms.
In our studies we used the VSI mode to study the surfaces of
treated/untreated iron.

8.4. Atomic Force Microscopy. A Park Autoprobe M5 atomic
force microscope was used to profile the surface of treated/
untreated samples of the iron chips before and after the chloride
treatment. The atomic force microscope probes the surface of a
sample with a sharp tip three um long and 20 nm in diameter
located at the free end of a cantilever. Forces between the tip and
the sample surface cause the cantilever to bend and deflect. A
laser beam reflected from the cantilever hits a detector area. The
detector measures the current, proportional to the cantilever
deflection, as the tip is scanned over the sample. These current
measurements allow a computer to generate an image of surface
topography. There are two main modes in operating an atomic
force microscope: contact mode and noncontact mode. In the
noncontact mode, the cantilever vibrates on the order of tens to
hundreds of angstroms above the sample surface, and the
interatomic force between the cantilever and sample is attractive.
In the contact mode, the cantilever is held a few angstroms above
the sample surface, and the interatomic force between the
cantilever and the sample is repulsive. Since available iron chips
have a homogeneous surface, we selected the contact mode for
our studies.

The silicon tips attached to a cantilever with a low spring
constant were used. The magnitude of the net force exerted to
the sample varied from 8 to 15 nN (nanoNewtons). The scan
speed was 100 mm/s. Typically a 100 mm x 100 mm field is
scanned. Two morphologies were observed on the surface of
untreated iron chips. A shiny (highly reflective) area represents
the layers of the iron oxide. Dark areas (weak reflectivity) are
associated with naturally occurring rust. On treated iron chips,
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a third morphology was observed. This was a grainy structure
of iron that becomes apparent after the layer of iron oxide is
removed. '

4. Results and Discussion

4.1.Localized/Pitting Corrosion. Pitting isnormally
initiated by the aggressive anions such as halide ions.
Several studies exist in the literature which talk about
the mechanism of breakdown of passive films present on
the surface of iron in the presence of chloride-containing
media.?3¢ The breakdown requires a minimum amount
of electrocapillary energy, whatever the mechanism of
breakdown. Furthermore, the kinetic data of Pou et al.36
reveal that the breakdown of oxide layers was consistent
with theion exchange processes, point-defect models, and
hydrated polymeric oxide model. For a review of the
mechanistic aspects of the breakdown of oxide layers, the
readerisreferred to the above two references. In this paper,
only results pertaining to our studies will be explained.

At this point, it is instructive to examine the SEM
photographs of the iron (Fisher iron) samples obtained
after TCE degradation. Parts aand b of Figure 2 show the
scanning electron micrographs of the fresh iron surface
and the iron surface after 81 h of degradation of TCE,
respectively. The effect of localized corrosion is not very
evident from these photographs. Figure 2¢c shows SEM of
the iron surface after 120 days of reaction time. It can be
seen that the localized corrosion is much more pronounced
after longer reaction times. This indicates the breakdown
ofthe precipitates with chloride ions. Thisis also consistent
with the result of Helland et al.,’® who reported a 60%
increase in the CCly dechlorination rates with increased
contact time, for the specific case of batch systems with
zerovalent iron. Thus, this can be interpreted as an
autocatalytic effect observed due to pitting corrosion in
the presence of chloride ions generated as a product of
reaction. As can be seen from Figure 2c, the corrosion
indeed appears to be localized and can be termed as crevice
corrosion.

It is quite clear that chloride ions are responsible for
the crevice corrosion observed. Therefore, we hypothesize
that increasing this form of corrosion should increase the
degradation rates. To investigate this, we deliberately
treated the iron surface with chloride ions prior to its
exposure to TCE solution. The morphological changes
expected due to the attack of chloride ions are defects on
the surface with trenches and peaks. The effect of this
surface modification on the TCE degradation has been
outlined in the subsequent sections.

4.2, Effect of Surface Pretreatment on TCE Deg-
radation. Figure 3 shows the results of TCE degradation
profiles obtained after the chloride treatment of Fisher
electrolytic iron (100 mesh). The results obtained with
untreated iron are also compared in the figure. These
results show that TCE degradation is indeed increased
by the chloride treatment. This increase is most prominent
in the reaction at early times. At later times, the effect of
chloride pretreatment provides little improvement (not
shown). Figure 3 shows the pronounced effect of chloride
treatment on the TCE degradation. This is also evident
from Figure 4, where the pseudo-first-order rate constants
for the degradation are plotted on the basis of the initial
rates. As can be seen from the figure, chloride pretreatment
provided almost 2-fold increase (from 0.019 to 0.037 h~1)
in the initial rate constant. Similar enhancements in the

(35) Sato, N. J. Electrochem. Soc. 1982, 129, 255.
(36) Pou, T\ E.; Murphy, O. J.; Young, V.; Bockris, J. J. Electrochem.
Soc. 1984, 131, 1243.
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Figure 2. Evidence of crevice corrosion. SEM photographs of
the iron surface: (a) fresh iron surface; (b) iron surface after
81h of reaction; (c) iron surface after 120 days of reaction time.
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Figure 5. Effect of chloride treatment on TCE degradation
with iron chips.

TCE degradation rates are also observed for iron chips
from chloride pretreatment (Figure 5). As can be seen
from Figure 5, the initial rates were again enhanced by
the chloride treatment. It should be noted that the iron
chips used in this study have very low external surface
area, resulting in the low degradation rates. However,
even with such low surface areas, the effect of chloride
treatment is quite evident. Comparison of Figures 3 and
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Figure 6. Surface profilometric data on the iron surface: (a,
top) fresh iron surface; (b, bottom) iron surface after chloride
treatment.

5 also reveals that the initial decline obtained with iron
chips is much faster than that with 100 mesh Fisher iron
fillings. The reason for this is not clear, although it is
possible that even though iron chips have lower external
surface areas, the additional internal surface area created
by crack formation after the pretreatment might be more
than that for the 100 mesh iron filings.

4.3. Surface Profilometric Results. Gray-scale ren-
ditions (obtained using the WYKO) of the surface topog-
raphy for the fresh iron and chloride-treated iron are
shown in Figure 6. These images show that the chloride-
treated surface is much more rough than the untreated
surface. This can be quantified by calculating the standard
deviation of the 2D surface profile. The root-mean-square
roughness for the untreated sample is 544 nm, and that
for the treated sample is 2960 nm, which is 5.4 times
greater than that of the untreated sample. This is also
evident from the height variation along the x and y
coordinate directions, as depicted in Figure 7. The fresh
iron surface, i.e., covered with oxide, does have some
variation (not shown) or, in other words, defects on the
surface. We hypothesized that these defects are indeed
the places where reaction takes place. In other words, the
active sites!”3° where the reactive sorption is assumed to
occur are these defects or cracks on the surface. Attempts
to increase this number of cracks by chloride pretreatment
indeed resulted in the increase in the reaction. This further
corroborates our hypothesis, which is also clear from
Figure 7. To check whether increased roughnessis actually
due to the presence of chloride, iron was also treated in
deionized water for 5 days in the absence of chloride.
Comparison of the surface plot of corroded iron in the
presence and absence of chloride (not shown) revealed
that the roughness observed on the surface indeed was
due to the pitting effect produced by chloride treatment.

Langmuir, Vol. 15, No. 24, 1999 8417

(@)

0 10 20 um
(® 3

0Zj e 3 ym
(©)

05 1o 20  pm

Figure 7. Surface profilometric data on the iron surface after
5 days of chloride pretreatment: (a) surface image; (b) vertical
profile of surface roughness; (c) horizontal profile of surface
roughness.

The effect of this surface treatment is reflected in the
increase in the degradation rates, which is shown in
Figures 3—5. Thus, our hypothesis that such a surface
roughness is beneficial for TCE degradation seems to be
justified. Furthermore, the decline in the enhancement
at longer times can be explained with the help of Figure
8. Examination of Figure 8 shows that though the iron
surface after reaction appears rough at first glance, the
height variations (peaks/valleys) on the surface have
diminished compared to those on the freshly treated iron
surface. As a result, there is no more rate enhancement
because of reduction in the number of active sites (defects/
pits) available as hypothesized earlier. The average
roughness was found to be considerably less for the sample
after 60 h of reaction, indicating that pitsinitially present
are either being filled over the course of reaction or are
being eaten away due to reaction, leaving a smoother metal
surface as found by Boronina et al.? in the case of zinc.
The possible reasons for this again can be formation of
precipitates. Carrying out the reaction in chloride-
containing media would therefore have a benign effect as
found by other researchers. Roberts and Fennelly? showed
that the presence of high C1~ during the 1,1-TCA reduction
reaction prevents the repassivation of the iron surface.
On the other hand, in the elegant work of Li and
Kiabunde,? bimetallic systems were found to enhance
the overall degradation rate.

4.4. AFM Images. AFM studies were undertaken to
characterize the three-dimensional changes on the mor-
phology of the iron surface with the chloride treatment
and the reaction, to better visualize the defects present
on the iron surface. The images shown here are only with
the iron chips (TCE degradation results shown in Figure
5).

Figure 9 gives the AFM images for the fresh iron chip
and the chloride-treated iron chip. The figure indicates
that the surface features observed with the surface
profilometer can be better viewed with AFM images. No
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Figure 8. Surface profilometric data on the iron surface after
60 h of reaction: (a) surface image; (b) vertical profile of
decreased surface roughness; (c) horizontal profile of decreased
surface roughness.

oxide covered
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Figure9. AFMimages: (a)oxide-covered iron chip; (b)chloride-
treated iron chip.

special features were observed on the oxide-covered iron
surface, other than occasional dark and shiny areas as
mentioned earlier. This is shown in Figure 9a. Figure 9b
clearly shows the evidence of the enhanced corrosion along
grain boundaries of iron as a result of the chloride
treatment. We further studied the defects/abnormalities
present on the surface. This is shown with the help of a
two-dimensional view of the chloride-treated sample
(Figure 9b), in Figure 10. It was found that the typical
depth of the trenches varied from 0.1 to 0.5 ym, and the
width of the trenches between the grains of iron varied
from 11 to 16 um. This is presented in Figure 10 through
three profiles of a trench located between two grains of
iron on the surface of the treated chip.

The effect of these surface defects and pits on the iron
chips on the TCE degradation profiles is shown in Figure
5.1t should be noted that the iron chips used in this study
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Figure 10. (a) 2-D representation of Figure 8. (b, c¢) Vertical
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were obtained from scrap metal inventory and therefore
have an oxide layer. As aresult, the active external surface
area of the metal is very low. Nonetheless, even with such
low surface areas, the enhanced dechlorination due to
defects on the surface of iron is evident from Figure 5.
This again confirms the hypothesis of the defects being
active sites, mainly responsible for TCE degradation.

It should be noted that the surface abnormalities can
be enormously increased by varying the treatment condi-
tions.3435 A systematic study of these conditions will be
required to achieve the optimum treatment condition,
which can yield much higher degradation rates than that
observed in the present study. One can also see that, as
the reaction proceeds, these surface deformities diminish
(Figure 8). This explains the possible reasons for the
decrease in the reaction rates at longer times. However,
in the presence of externally added chloride, one can
enforce these deformities on the surface by continuous
breakdown ofthe oxide precipitates that might be formed.
This was confirmed by a recently published study,? in
which much higher degradation rates of dechlorination of
1,1,1-TCA with Fe? in the presence of 0.1M NaCl in the
reaction system were observed. Another study®® also found
that the addition of chloride ion increased the rate of CCly
dechlorination as high as 4-fold.

5. Possible Mechanisms for Observed
Enhancement

Until now we have discussed the evidence observed for
the pitting corrosion during the reductive dehalogenation
of TCE with zerovalent iron. The evidence of this corrosion
mechanism was further corroborated by the observed
enhancements obtained by creating more pits. In this
section, an attempt is made to explain the reason for this
by making use of the corrosion literature.

In a recently published study, Scherer et al.,*” have
given an excellent review of the different roles that oxide
layers present on the surface of iron might play during
the reductive dehalogenation reaction. To explain the
current results, we have used the concept of the role of the
oxide layer as a physical barrier, as explained in this paper.
We observed pit formation through these oxide layers when

(387) Scherer, M. M.; Balko, B. A.; Tratnyek, P. G. The Role of Oxides
in Reduction Reactions at the Metal-Water Interface. In Kinetics and
Mechanisms of Reactions at the Mineral/ Water Interface; Sparks, D.
L., Grundl, T., Eds.; ACS Symposium Series; American Chemical
Society: Washington, DC, 1998.
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Figure 11. Possible mechanism for the observed enhancement
in dechlorination rates (adapted from ref 37).

the iron was pretreated with chloride-containing solution.
It should be noted that these pits create new, longer
diffusion paths?538-40 for TCE to react with the bare metal
at the bottom of the pit. Such longer diffusion paths to the
bottom of the pit restrict the transport of aqueous species
from the bulk ofthe solution. These longer diffusion paths
might lower the degradation rates of TCE. However, it
should be noted that two additional phenomena are
encountered® due to pit formation. First, anodic metal
dissolution in aqueous solutions containing Cl~ ion gener-
ally leads to the accumulation of metal ions and chloride
ions adjacent to the metal surface. In the case of iron
group metals, the accumulation of metal ions gives rise
to acidification due to metal ion hydrolysis. On the other
hand, relatively alkaline conditions exist at the mouth of
the pit, which may favor repassivation of the surface due
to Fe?* diffusing from below. As with the case of crevice
corrosion of iron in the presence of chloride ions, the overall
rate of the process can be enhanced through the formation
of surface defects, or pits.

Macroscopically, pit breakdown can be described by the
current ()—potential (E) curve. An example of ai—E curve
isshown in Figure 11.37 The two half-reactions completing
the electrochemical cell in both the bottom and mouth of
the pit are also shown in Figure 11. As mentioned before,
the conditions at the bottom of the pit are more acidic,
and the half-reaction of dissolution of iron is primarily
balanced by the reduction of water (because of restriction
of TCE to approach the bottom of the pit due to induced
longer paths). At the mouth of the pit, the half-reactions
are dissolution at a passivated iron metal surface (alkaline
conditions) and possible reduction of water or stronger
oxidants such as oxygen or TCE. Thus, the conditions in
the pit create two electrochemical cells, one at the bottom
and other at the mouth of the pit. Whenever two
electrochemical or galvanic cells are in close proximity to
each other, the net corrosion rate of the metal is more
than that with just one cell.3* The enhancement in the
degradation rate at early times could thus be attributed
to the acceleration of corrosion associated with pitting
results. This occurs because the close proximity of the two
cells creates a coupled cell where acidic iron dissolution
at the bottom of the pit and reduction of TCE at the mouth
of the pit become the controlling anodic and cathodic
processes. According to Scherer et al.,*” the net rate of
dehalogenation in this case would be equal to the rate of
corrosion. Furthermore, the typical size of the pit observed
was 11—-16 um. One of the factors governing stability of
pits, or in other words preventing repassivation of pits,
is the pit size. Sato® reports that the critical pitting radius
required for stable pitting is 10—20 ym. The value we

(38) Sato, N. J. Electrochem. Soc. 1982, 129, 260.

(39) Hassan, S. M.; Wolfe, N. L.; Cipollone, M. G.; Burris, D. R. Prepr.
Extended Abstr. Am. Chem. Soc. 1993, 33.

(40) Roberts, A. L.; Totten, L. A.; Arnold, W. A,; Burris, D. R.;
Campbell, T. J. Environ. Sci. Technol. 1996, 30, 2654.
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observed was also in this range, further supporting our
claim about the stability of the pits. The imperfections of
this order could act as initial sites for pitting.3® The results
obtained so far indicate that such a pitting mechanism
seems to enhance the rate of dechlorination of TCE. In
such a scenario, the major half-reaction at the mouth of
the pit (in the absence of the oxygen) would be the
dehalogenation of TCE. This possibility has also been
speculated in a recent paper.?’

There is, however, one more possibility for the observed
enhancement. Pitting dissolution, as discussed earlier,
leads to evolution of the hydrogen gas at the bottom of the
pit. The possibility of this hydrogen acting as a direct
reducing agent has already been discussed by Matheson
and Tratnyek.? However, to have such action, catalysts
are required. Matheson and Tratnyek® point out the
possibility of defects/pits present on the surface acting as
catalysts for such direct hydrogenation. In this study, as
evidenced by AFM images and surface profilometricdata,
defect and pit formation was increased by chloride
treatment. These defects could thus act as catalysts for
the direct reduction by hydrogen generated as a result of
corrosion, leading to enhancement in the reaction rate.

There is aneed to do more research in this area to discern
the exact mechanism responsible for the observed en-
hancement.

6. Conclusions

Surface characterization techniques have been em-
ployed to gain insight into the metallic surface effects
involved in the reductive dehalogenation of TCE with
zerovalent iron. It hasbeen found that the defects present
on the surface act as reactive sites for the dehalogenation
process. A simple way to increase the number of abnor-
malities on the surface is by chloride pretreatment, and
thus causes improvement in the degradation rates at early
times. But these enhancements disappear at longer
reaction times, which is attributed to the decrease in the
surface roughness over the course of reaction. The
increased reaction rates were attributed to the morpho-
logical changes occurring on the surface of iron, which
were studied using surface profilometry and AFM. Two
possible mechanisms, the proximity of two electrochemical
cells and the direct hydrogenation in the presence of defects
acting as catalysts have been proposed. This research
explores a new approach for surface modifications that
can enhance the degradation rates. Moreover, such surface
modifications can also lead to reduced remediation times
in in situ applications. Further analysis of the correlation
between the surface defects and the degradation rates
with the goal of determining optimum conditions needs
to be investigated.
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Nomenclature
As fractional active site concentration
b Langmuir adsorption isotherm parameter
C,?,CE total concentration of TCE on the iron surface
[nmol/g]
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concentration of TCE on the iron surface at the
active sites [mmol/g]

concentration of TCE in the aqueous phase [nmol/
ml]

Lagmuir adsorption isotherm parameter

intrinsic value of the degradation constant of TCE
with zerovalent iron [h~1]
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observed value of the degradation constant [h™1]
Langmuir adsorption isotherm parameter
amount of iron used in the reaction system [g]
volume of the aqueous phase [L]
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‘Nanolithography Considerations for Multi-Passband Grating Filters
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The placement accuracy and resolution of direct-write patterning tools, in particular the atomic force
microscope (AFM), is considered for application to fabricating multi-passband integrated optical filters.
Because of its simpler fabrication a grating structure is proposed that consists of identical stripes that are
non-periodically spaced. The recently developed pseudorandom encoding method from the field of
computer generated holography is modified to effectively assign analog reflectances at each point along the
grating by selective withdrawal and offsetting of the stripes from a periodic spacing. An example filter
designed by this method has two 1.5 nm bandwidth passbands and —23 dB of rejection for lightly coupled
stripes. As with single band filters, the passbands broaden as the coupling increases. A calculation of the
coupling coefficient of stripes on a fundamental mode, slab waveguide indicate that stripes on the order of
100 nm in depth and width support low insertion loss, multipassband filtering applications at visible
wavelengths. Lines of these dimensions patterned with an AFM on (110) silicon indicates the feasibility of
fabricating these filters. These conclusions are specific to current AFM’s that are limited to writing fields of
100 gm. Increased rejection and decreased passband widths will result from incorporating precise field-
stitching into future AFM’s.

Key words: atomic force microscopy, nanolithography, photonic crystals, optical information processing,

waveguide optics, nanometer optics

1. Introduction

Periodically spaced arrays (Fig. 1(a)) are known to
strongly reflect plane waves of specific temporal frequen-
cies determined by phase matching between the wave
vector and the grating period. These structures have
been applied as filters in distributed feedback laser di-
odes, distributed Bragg reflector fiber optic filters, pla-
nar integrated optics and volume holography. In the earli-
est implementations of these devices, it was common to
interfere two plane waves in photosensitive films such as
photoresists, photographic film, or photorefractive me-
dia to produce gratings having single wavelength reflec-
tion passbands. However, a much more general range of
frequency responses is available by individually setting
the position and reflectivity of each reflector in a grating
(Fig. 1(b)). For example, filters that have multiple pass-
bands can be designed, and it even is possible to specify
different levels of attenuation and bandwidth for each
passband. The generalized filter functions provide im-
portant building blocks for wavelength multiplexing,
demultiplexing, sorting and routing functions for fiber
communications systems.

Since such reflector spacings are non-periodic, the
original interferometric exposure methods cannot be
used and more general patterning methods are required.
These patterning methods require placement precision
and feature sizes that are finer than for periodic gratings.
For gratings designed for visible laser wavelengths, the
pitch of a periodic grating can be on the order of 250 nm
(which corresponds to half the wavelength at the center
frequency of the grating). Therefore resolution and line

E mail: rwcohnOl@ulkyvm lou1sv1lle edu

widths several times finer than the optical wavelength of
interest are required to fabricate generalized non-peri-
odic gratings.

Patterning systems with precision 2 to 3 orders of mag-
nitude finer than visible wavelengths already exist and
can provide essentially arbitrary control over the grating
structures. For example, today’s highest performance
electron beam pattern generators direct-write lines as
small as 30 nm.? However, commercially available sur-
face profiling microscopes (SPM’s) also have placement
resolution finer than 1 nm within a field of view of
100 x 100 um. Various proximal probe writing methods
have been demonstrated using surface profiling micro-
scopes (including atomic force, surface tunneling and
near-field optical scanning microscopes) and line widths
as small as 10 nm have been reported.? Furthermore, the
increasing availability and the lower cost of SPM’s make
it is reasonable to consider their application for direct-
write nanometer-scale lithography—especially during
the development and prototyping of devices where writ-
ing speed of the SPM is not a critical concern.

While SPM’s can provide nearly complete analog con-
trol of grating parameters, it is usually desirable if the
number of fabrication variables can be reduced. This can
accelerate the development, verification and, especially,
the calibration of the fabrication processes. Achieving
this partial control then establishes the level needed to be-
gin developing more extensive analog control of the
device parameters. Following this basic philosophy we in-
troduce a simplified device (Fig. 1(c)) that differs from a
periodic grating in the following ways: (1) Rather than
locating the reflective stripes on half wavelength spac-
ings, the stripes are placed on quarter wavelength spac-
ings; (2) Rather than placing a stripe at each half
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Fig. 1. Types of reflection filters. (a) Periodic reflectors which
cause unit amplitude reflections that are separated by optical path
differences of period A, (b) aperiodic reflectors that through offsets
and variable reflection strengths represent arbitrary complex
valued reflectances, (c) proposed aperiodic structure that through
Ao/ 2 offsets and pseudorandom encoding algorithms represents the
continuum of real values between —1 to 1, (d) proposed aperiodic
structure with tilted reflectors. The dotted lines indicate the
sampling grid for the periodic filter.

wavelength position, there is a mathematical prescrip-
tion for writing, or not writing a stripe on each quarter
wavelength spacing. The second difference provides a
mechanism for effectively realizing a desired analog
valued reflectance without resorting to varying the width
or depth of individual stripes. Therefore, the new grating
structure is also simplified over a fully analog aperiodic
grating in that (1) the stripes are located on quarter
wavelength centers rather than positioned anywhere on a
continuum and (2) the reflectivity of all the stripes are
identical rather than varied in an analog fashion. These
fabrication constraints provide adequate flexibility to
demonstrate multipassband filters.

Therefore, the main objective of this paper is to show a
fabrication efficient method of designing multipassband
grating filters. A second objective is to show how the de-
sign of grating filters specific to fabrication constraints
can be further generalized. This philosophy and ap-
proach to filter design is analogous to the methods from
the field of computer generated holography.®® Specifi-
cally, the temporal frequency response of a grating is
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mathematically similar to the spatial frequency response
(i.e. the far-field diffraction pattern) of a monochromati-
cally illuminated computer generated hologram (CGH).
This similarity can be used to directly encode a desired
complex-valued temporal function/impulse response
into a grating. The Fourier transform of this function is
the desired temporal frequency response. These similari-
ties are used in Sect. 2 to adapt CGH methaods, specifical-
ly the recently developed pseudorandom encoding me-
thods,* " to the design of multipassband filters. In Sect. 3
a specific dual passband filter is specified using the CGH
algorithm and the range of validity of the design is eval-
uated using a coupling of modes analysis that models the
frequency response of the grating when it is implement-
ed as a slab waveguide. The analysis accounts for multi-
ple reflections in the grating as a function of width and
depth of the grating stripes. Sect. 4 describes our initjal
efforts at fabricating a nonperiodic grating using an atom-
ic force microscope (AFM). This grating provides a physi-
cal example of the proposed grating structure.

2. CGH Algorithm for Multipassband Grating
Filters

From the beginnings of computer generated holo-
graphy® until today*® a critical issue has been how to
represent complex valued spatial modulation with
devices that do not produce arbitrary complex valued
modulation. In this field the cost of implementing fully
complex spatial light modulators has been considered to
be difficult and costly. For this reason numerous methods
of encoding fully complex valued modulation have been
explored and developed specific to the modulation prop-
erties of various media. Some general classes of modulat-
ing devices include amplitude-only, phase-only, and vari-
ous degrees of coupling between amplitude and phase.?
Another classification is if the modulation values at an in-
dividual point are continuous or discrete.” These and
other factors, as well, have stimulated many novel
methods of encoding complex valued functions. The
CGH design problem, in its similarity to the grating filter
design problem, offers a useful source of ideas and in-
sight for developing encoding schemes suited to the fabri-
cation constraints of grating filters. This section adapts
the CGH methodology to the problem of representing ar-
bitrary complex-valued reflectances with the minimum
increase in fabrication complexity (e.g. positioning ac-
curacy and stripe resolution) over that needed to produce
periodic grating filters.

2.1 Complex-Valued Gratings

Consider the case, illustrated by Fig. 1(b), of a plane
wave incident on an array of reflective stripes. In this sec-
tion we consider the grating to be weakly reflective so
that the effect of multiple reflections can be ignored.
Then the frequency response of the grating’s impulse
response is known to be

N
F(v)=> a;exp (j2rvt), (1)
pourt
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where g; is the (real-valued) reflectance, {; is the time
delay produced by the #’th stripe of the N stripe grating
and v is the temporal frequency of the light. The stripe
reflectance can be interpreted as being complex-valued
by rewriting Eq. (1) using the definitions v=v,+dv and
l;=1l,+ 81; where dt, are the offsets of the stripes if, from
a perfectly periodic grating, and dv is the frequency
offset from the center frequency v;. Multiplying out
these terms in the argument of the exponential in Eq. (1)
yields a product of four complex exponentials. One term
is exp (72rndvat)=1 for frequency ranges of concern
dv<«vp. This condition is usually easy to meet in current
wavelength division multiplexing systems where laser
tuning ranges and system bandwidths are usually less
than 100 nm. Ignoring this term leads to Eq. (1) being ap-
proximated as
N
F(v)= Y a;exp (jo) exp (j 2nityv), )
i=1

where p;=2mvyd 1, is the nominal phase shift produced by
offsetting the stripe positions from those of a periodic
grating. Equation (2) is the Fourier transform of a period-
ic grating in which the stripes have fully complex valued
reflectances. It is mathematically identical to the far-field
diffraction pattern of the original Lohmann CGH,? in
which case v would represent the spatial coordinate
across the diffraction plane. For the wide range of optical
frequencies over which Eq. (2) is valid, nearly arbitrary
frequency responses can be designed based on the values
selected for the number of stripes, and the magnitude
and phase of the stripe reflectances.
2.2 Selection of Stripe Reflectances for Dual Passband
Filters

Following the CGH design philosophy, the first step in
a design is to identify the available modulation values
that can be implemented. Then an encoding scheme is de-
veloped to represent all the modulation values needed to
design a spectrum. In this section we apply this approach
to the design of a dual-passband grating filter. As dis-
cussed in Sect. 1, it is desirable to achieve the filter func-
tion with the simplest fabrication processes possible. For
this reason we have specified a lithography in which each
stripe is identical in geometry and stripes are written on
a periodic grid corresponding to a sample spacing of 4o/
2 optical path difference where A, is the wavelength at
center frequency vo. This prescription allows reflectance
values of 1, 0 and —1 to be implemented. From these
values an encoding method is developed that effectively
realizes a continuum of reflectances from —1 to 1. This
particular algorithm is by no means the only possible
CGH algorithm that could be employed, but its numeri-
cally simple implementation makes it especially useful
for purposes of illustration.

In passing we note that the particular encoding
method can be generalized from real, to complex-valued
representations if the pitch of the sampling grid on which

the reflectors are placed is reduced from 4,/2 to A¢/3.

Then the CGH method of ternary-valued encoding can
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be applied with consequent improvements in the accu-
racy of the encoding to approximate the desired
spectrum.” Even finer placement resolutions lead to
even more accurate encoding methods. The writing of
thinner lines is also desirable in that the SPM writing
speed can be increased. However, thin lines must be etch-
ed more deeply to produce reflection strengths equal to
those of thicker lines. The relationship between etch
depth and reflectance is considered further in Sect. 3.
For the frequency responses developed here, positive
and negative real valued modulation is sufficient and pro-
vides the least strict requirements on line width and
placement accuracy.

Based on the above considerations on the dual pass-
band filter, each stripe will be limited by the fabrication
process to be identical. Therefore a; the magnitude of the
reflectance of each stripe is identical. However, there is
the option to not place a stripe at certain locations on the
sampling grid. Therefore, either a unity amplitude “1”
or a zero amplitude “0”’ can be realized at each sample
point of the grid. In general, any phase ¢;=27dt;/# can
be realized by offsetting/ delaying the stripes from the ¢
sampling points on the grid. We however limit the offsets
to 0 or Ay/2. Therefore, the phases of the reflectances
can be either 0 (for §£,=0) or © (for 6¢;=1y/2). The com-
plex reflectances a;=a; exp (j¢:) in Eq. (2) that can be
realized are ‘“1’’, when a stripe is written at the 7o sam-
pling point of the grid, ‘“—1"’ when a stripe is written at
the (1+(1/2))A, sampling point on the grid, and “0”
when a stripe is written at neither of the two sampling
points. [Stripes also could be written simultaneously at
both the 74y and (74 (1/2))44 locations, but we do not con-
sider this possibility here.]

2.3 Pseudorandom Encoding: A CGH Algorithm for En-
coding Fully Complex Values

One recently developed class of CGH methods that can
be adapted to the problem of encoding continuous valued
reflectances with only the three amplitudes —1, 0 and 1
is referred to as pseudorandom encoding.®® A specific al-
gorithm already developed for the case of bi-magnitude
SLM’s will be used.” Given two available values of mag-
nitude 0 and 1, bi-magnitude pseudorandom encoding
can represent/encode any desired magnitude a,; between
0 and 1. Used together with the additional sign reversal
available by offsetting a stripe a half wavelength, all
desired amplitudes between —1 and 1 can be encoded.
The basic algorithm and the results of a theoretical per-
formance analysis are given here. References 6-9 may be
consulted for additional background and theory on pseu-
dorandom CGH algorithms.

In pseudorandom encoding the magnitude a; for the
1’th stripe is selected using a random number generator.
Specifically, the random number generator is configured
to produce random numbers from the probability density
function (pdf)

play=a, 6(a;i—1)+(1—ay) 6(ay), 3

where d( - ) is the Dirac delta function, and a, is the
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probability of selecting the magnitude to be a;=1 and
1—a, is the probability of selecting the magnitude to be
a;=0. The expected value of the random variable that has
the pdf in Eq. (3) is

aip=1-a.;+0-(1-ai)=as 4)

where ¢ - ) is the expectation operator. This shows that
for bi-magnitude random selection that the probability of
selecting a 1 is identical to the desired magnitude a,.
Therefore, any value of a.; between 0 and 1 can be real-
ized by using a binary random number generator to
select a 1 stripe with a relative frequency a, and a 0
stripe with a relative frequency of 1—a,. Evaluating the
Fourier transform of the expected grating reflectance®?
shows that the on-average frequency response is

N
(FO» =3 a;exp (j2nityv), )
=1

which with a,;=a; exp (j¢;) is identical in form to Eq. (2).
Thus in an average sense, pseudorandom encoding
produces desired frequency responses. The quality of the
encoding method is understood by evaluating the ex-
pected power spectrum, which is found to be

N
TEP=IKFRI12+ Y] [a:(1—aq)) (6)
i=1

The second term of Eq. (6) indicates that each stripe con-
tributes an identifiable amount of noise. The most noise
is 0.25 (when a,;=0.5). The noise contributions approach
zero as the values of the desired magnitudes a,; approach
either 1 or 0.

It should be noted that random bi-magnitude selection
was applied previously to surface acoustic wave filters.
Specifically, this invention is referred to as the with-
drawal weighted interdigital transducer.'® However, the
principle of pseudorandom encoding is much more gen-
eral and can be applied to a near infinite variety of modula-
tor characteristics as is illustrated in Refs. 6-9.

3. Design and Coupled Mode Analysis of a Multi-
passband Filter

In this section the bi-magnitude pseudorandom encod-
ing algorithm is applied to the design of a dual passband
filter. Then the design is validated by evaluating it with a
coupling of modes analysis that incorporates the effects
of multiple reflections. Finally the influence of stripe
width and depth on filter insertion loss is evaluated.
3.1 Fabrication Constraints on the Design

The impulse response of the grating is designed to
cover optical path differences of 5121y or an ~ 100 um
field of view for 1y=640 nm. For an effective refractive
index of #n,=1.5 a grating filter of the form of Fig. 1(c)
would occupy 109 um. Thus 1, optical path difference
would correspond to a pitch of A=213 nm. However,
since the layout in Fig. 1(c) permits stripes (say a —1 and
a 1 in sequence) to be written as close together as A/
2=107 nm. Therefore corvidering limits on makine per
fectly vertical sidewalls, line widths of even less than
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Fig. 2. Pseudorandom encoding of dual passband filter. (a)
Desired real-valued reflectances and the desired function encoded
with the three available values —1, 0 and 1. (b) The reflectance
power spectra derived from the Fourier transforms of the temporal
functions in (a). The thin line is the spectrum for the desired
function and the thick line is the spectrum for the encoded function.

100 nm are generally required for the bi-phase grating.
3.2 Grating Specification and Encoding

Based on the AFM field of view constraint we choose
to design a dual passband filter that consists of N=512
reflectances a;. The reflectances are proportional to 1, 0
or —1 where the negative value is produced by using a
Ao/ 2 retardation to introduce a n phase reversal. Continu-
ous real valued magnitudes a,; are encoded using the
pseudorandom algorithm from Sect. 2.

The function that is encoded is the continuous curve in
Fig. 2(a). This function is a modified Dolph apodization
multiplied by a sinusoid. The Fourier transformed spec-
trum of this function is shown in Fig. 2(b). The sinusoidal
modulation introduces two passbands centered +7 nm
around the center frequency 640 nm. The Dolph apodiza-
tion is known to reduce the sidelobes the greatest
amaonnt for a given broadening of the passhand.'™ The
Dolph function is infinite in extent, but here it has been
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truncated al a maximum magnitude of 0.077. This
sacrifices the sidelobe level somewhat, but for a fixed
field of view grating the passband is narrower than if the
Dolph weights were allowed to decay Lo near zero. The
moditied Dolph apodization produces a - 35 dB sidelobe
level and a —3 dB bandwidth (i.e. full width at half maxi-
mum power) of 1.5 nm. This can be compared with the
frequency response for 512 periodically spaced, unit
strength reflectors. The periodic filter would have a side-
lobe level of —13dB and a passband bandwidth of ap-
proximately A,/N=1.25 nm, however the actual =3 dB
bandwidth found numerically is 1.1 nm.

The encoded function is represented by the dots of
values 1. 0 and —1 in Fig. 2(a). As prescribed by pseu-
dorandom encoding, desired values close to 1 are usually,
but not always, represented by a;=1. Likewise values
close to 0 and —1 are most frequently represented by
those values. The Fourier transform of the encoded
values a. produces the spectrum (thick line) in Fig. 2(b).
The bandwidth of each passband is 1.5nm and the
highest sidelobe level is —23 dB. The sidelobe level
reflects the noise introduced by the noise term (i.e. the
summation) in Eq. (6). The average noise level calculated
from this term is —24 dB below the peak of the pass-
band. Thus the sidelobes from the apodization are low
enough that the noise from the encoding procedure is the
principal contributor to the sidelobe level. The sidelobe
level can be improved by using more samples in the fil-
ter. This could be achieved by designing for even shorter
wavelengths or by increasing the field over which the
patterning tool can write. Increasing the writing field
would also allow the passbands to be narrowed further.
3.3 Evaluation of the Grating Filter in a Slab Waveguide
Configuration

The frequency response of a periodic corrugated
waveguide has been analyzed using coupling of modes
(COM) analysis by Kogelnik.!? Closed form COM solu-
tions for non-periodic linear and quadratically chirped
gratings were also developed by Kogelnik."” However, a
method of analyzing general nonperiodic structures is
needed. The analysis of arbitrary nonperiodic gratings
should be analogous to the Born and Wolf analysis of a
stack of nonidentical etalons.'"” Kogelnik has already
adapted their method to propagation in a layered or
stratified waveguide.'? Instead of propagation being
parallel to the layers we consider the case of plane wave
propagation normal to the layers. We only discuss the
TE case, in which case the electric field is parallel to the
stripes.

While we use the analysis to evaluate the spectrum of
the dual passband filter, it does not by itself provide infor-
mation on the dependence of grating reflectance on the
stripe width and depth. However, it is possible to relate
the coupling - coeflicient x used in COM analysis of
sinusoidally perturbed guides to the refractive index
difference An between the two types of layers used in a
periodic etalon stack. Furthermore « for a square wave
grating on top of a slab waveguide has been directly re-
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lated to that for a sinusoidal grating.' These relation-
ships are used to estimate the appropriate stripe geo-
metry as a function of the magnitude of the grating reflec-
tance. The remainder of this section summarizes these
analysis procedures and uses them to evaluate the perfor-
mance of the dual passband filter design.

3.4 Discrete Layer Analvsis

The wavelength dependent reflectance of an etalon
stack can be analyzed by cascading the reflection and
transmission properties of the individual layers. For this
Discrete Laver (DL) analysis, cach layer is modeled using
a 2 x 2 characteristic scattering matrix as described in
Ref. 14. Each section is designed to introduce a quarter
wavelength optical delay In=A,/4 where n is the refrac-
tive index of a particular layer and /is its physical length.
The characteristic matrices for all the layers are multi-
plied in sequence and the resulting matrix is evaluated to
give the frequency dependent complex reflectance.

For the proposed grating filter the sections that
represent values of either 1, —1 or 0 are modeled as fol-
lows. Each section consists of two quarter wavelength
layers. A 0 corresponds to two layers of refractive index
n=1. A 1 corresponds to a layer with n>1 followed by a
layer n=1. A —1 corresponds to a layer with n=1 fol-
lowed by a layer with 7> 1, which is the reverse of the or-
dering used for the value 1. In this way the higher index
layers represent stripes located at the desired positions
in the proposed grating filter.

This method is adequately general for- analyzing
aperiodic structures. However, in order to relate the DL
analysis to COM analysis it is useful to consider the spe-
cial case for a periodic structure. Kogelik’s analysis of
the periodic, sinusoidally perturbed waveguide of length
L and coupling coefficient x gives essentially identical
results as the DL analysis of N pairs of quarter-
wavelength layers that differ in refractive index by 4 if

AnEKAO/Z. (7)

We have also checked this correspondence through nu-
merical simulation. We specifically evaluated a 512
period structure as a function of An for both analyses.
The DL geometry consists of 1024 layers of alternating
refractive index n+4n and n. The correspondence be-
tween the two models is compared in (Fig. 3) in terms of
the —3 dB bandwidth as a function of filter reflectance at
center wavelength 1o=640 nm. The results are identical
for the two analyses except for small errors that are due
to the small number of sample points used in calculating
the spectra. The bandwidth broadening is a direct result
of strong multiple reflections that saturate the frequency
response around the center frequency. In each case iden-
tical centerband reflectances are found if the stacked
etalon and COM analyses use values of 4z and « that
are related by Eq. (7). These correspondences between
the two analyses indicate that the DL analysis for the aperi-
odic filters will reasonably model our grating structures of
interest.
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Fig. 3. Bandwidth at -3dB of peak intensity for a single

passband (512 period) grating filter and the dual passband grating
filter as a function of filter inscrtion loss. The correspondence be-
tween the COM (coupling of modes) and DL (discrete layer)
analyses for the periodic structure indicates the validity of the DL
analysis for the analysis of the non-periodic dual passband filter.
—, dual band filter (DL); — — . periodic grating (DL); ------ R
periodic grating (COM).

3.5 Grating Depth Analysis

Yariv describes a method of calculating the coupling
" coefficient for TE waves propagating in a slab waveguide
that is perturbed by a square wave corrugation.’® Follow-
ing this procedure we derived from the unperturbed field
distribution a closed form expression for the coupling
coefficient. For simplicity of presentation, we only report
our result for symmetric slab waveguides. We find that
the coupling coefficient can be expressed as

v2y. ndi
K== 9« g
el 241y, cos” (hy, [2)

T
[ sin (hy,)—sin (k yq—Zd{}
xd+ - ,
2y,

where £ is the thickness of the guiding layer, d is the cor-
rugation depth, #, is the refractive index of the cladding,
ny is the refractive index of the guiding region, and
n.=pB/(2n) is the etlective index for the wave having
propagation constant . The eigenvalues that describe
the field distribution of the unperturbed field are ¥, for
the guiding layer and y, for the cladding regions. Yariv
has presented an approximate expression for x (Eq.
13.4-17 of Ref. 15). This approximation is valid only for
h(ng—mnc)/ 2> 1. This condition is valid only if the guide
can support multiple modes.'” However, Eq. (8) is valid
even for single mode guides.

Equation (8) specifically describes x for the fundamen-
tal waveguide mode and the fundamental Fourier series
harmonic of a 50% duty cycle grating. The expression of
coupling coefficient is generalized for a rectangular grat-
ing of any duty cycle according to

K, =K sin (n4), 9)

@®
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Fig. 4. Reflectance spectra for the dual passband filter design.
The DL analyses (thick lines) are shown for filter insertion loss (i.e.
peak intensity reflectance at centerband) of (a) 0.068, (b) 0.532 and
(c) 0.917. The spectrum for the dual passband design from Fig. 2 is
also replotted (thin line) for comparison. The reflectance spectra are
normalized so as to bring their sidelobe structure into
correspondence with the design spectrum.

where the term sin(nd) is the ratio of the Fourier
coefficient of a grating of duty cycle 4 to the coefficient
for4=1/2.
3.6 DL Analysis of the Dual Pussband Filler

Figure 4 shows representative spectra resulting from
the DL analysis for values of 4 of 0.0015, 0.0065, and
0.14 for a-c respectively in Fig. 4. For a centerband
reflectance (i.e. insertion loss) of 0.068 (—11.7 dB) the
DL analysis in Fig. 4(a) is nearly identical to the Fourier
transform of the encoded function (from Fig. 2). For an
insertion loss of 0.532 (—~2.7 dB) the mainlobes in Fig.
4(b) are slightly saturated and the sidelobe are nearly
identical to the designed spectrum. For insertion loss of
0.917 (—0.38) dB, Fig. 4(c) shows a strong intensity satu-
ration and frequency broadening of the passbands.
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Again, the sidelobes are nearly identical to those of the
designed spectrum. These results show that encoded de-
sign methods serve a useful role even when the pass-
bands are heavily saturated; namely, improving rejection
by shaping the sidelobe region. Figure 3 summarizes the
distortion from the designed spectrum in terms of ban-
dwidth broadening for various levels of insertion loss. As
with the periodic gratings the bandwidth increases with
decreasing loss.

We also compared the values of An used in the DL ana-
lyses of the periodic grating with the values of Ax for the
non-periodic grating. We found for equal insertion loss
that 4n was typically 3.7X greater for the aperiodic grat-
ing than for the periodic grating. This ratio is similar to
the ratio of the peak magnitude of the Fourier transform
of the periodic grating to that of the non-periodic grating
which is 4.0X. Furthermore, since coupling coefhicient in
Eq. (7) is proportional to 4#, the proportionality between
An for the periodic and non-periodic gratings gives some
idea of the stripe depth required to achieve a desired
level of insertion loss.

3.7 Analysis of Stripe Geometry

Equation (8), the relationship between stripe depth d
and coupling coefhicient for a periodic grating of 50%
duty cycle (where duty cycle is the ratio of stripe width to
grating period) is evaluated in Fig. 5 for four values of
guide thickness £=0.5, 1, 2 and 3 um. Figure 5(a) shows
the coupling coefficients for n,=1.5 and Fig. 5(b) shows
the coupling coefficient for n,=1.05. In both cases n,=1.
In Fig. 5(a) the curves for #=0.5 and 1 um correspond to
single mode operation while all four curves in Fig. 5(b)
are for single mode operation.

Figure 5(a) shows coupling coefficients as large as
50 mm ™. For the 512 period periodic filter —1 dB insertion
loss (0.8 reflectance) corresponds to x«=8.8 mm™!.
However, since the duty cycle 4 for the aperiodic grating
is at most 25% to avoid overlap of stripes Eq. (9) gives
that «, /x < V1/2. Additionally, since the peak amplitude
of the periodic filter is 4X less than the dual passband
filter for the same value of then coupling of at least 50
mm~' is required to obtain dual passband filters with
—1 dB insertion loss. Figure 5(a) shows that —1 dB inser-
tion loss is possible using stripes of depth ~50 nm for
the 0.5 micron guiding layer and ~130 nm for the 1
micron layer. For the lower index guide of Fig. 5(b), a
coupling coefficient of only 10 mm ™" is achieved for stripe
depths of ~70 nm and ~125nm. Note however that
reducing « by a factor of 14.4X reduces insertion loss
from —1 dB to —20 dB. For the dual passhand filter con-
sidered here, —20 dB corresponds to x=3.5 mm~’. For
the Fig. 5(b) curve the stripe depths would correspond to
approximately 25 nm, 50 nm and 150 nm for the 0.5, 1
and 2 um guides respectively. The point of this analysis
is that there is substantial flexibility in adjusting stripe
depth and width, and guiding layer thickness to obtain
low insertion loss filters, lightly coupled wavelength
selective drops, and intermediately coupled power split-
ters.
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F1g 5. Reflected wave coupling strength for a periodic grating on
a symmetric slab waveguide. The results shown are for the
fundamental TE mode of the guide, guiding layers of thickness be-
tween 0.5 and 3.0 um, and a 50% duty cycle grating. The curves are
for cladding index #,=1 and for guide index (a) #,=1.5 and (b)
7,=1.05. —, 0.5 ym; —, 1.0 yum; ———-, 2.0 um; ——, 3.0 um.

In passing we note that somewhat narrower stripes
will not require significant increases in stripe depth,
though substantially narrower stripes will. For example,
for a duty cycle 4=1/6 a compensation k/x,=2 in
stripe depth is needed to obtain identical reflectivity as a
50% duty cycle grating, while for 4=1/32 a compensa-
tion of k/k,=10 is needed. These results give some idea
of the tradeofl between stripe depth and stripe width.
Thus, while narrower stripes are desirable in that they al-
low finer placement with consequent improvements in
line writing speed and enhanced performance encoding
algorithms, this must be traded off with the requirements
for increasing depth of the stripes. These limitations can
be further compensated if filters having a greater num-
ber of stripes can be fabricated. Ways that the writing
range of the AFM might be extended are considered fur-
ther in Sect. 5.
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Fig. 6. A non-periodic silicon dioxide grating that has been direct
written on a silicon surface using an atomic force microscope. The
structure (which also was profiled by an AFM) is annotated with
wavelengths and stripe reflectances in the same manner as the
proposed filter of Fig. 1(c). The closest spacing of adjacent lines in
this AFM profile is 240 nm for a 1 followed by a —1.

4. Initial Fabrication of Non-Periodic Gratings for
Multi-Passband Reflection Filters

Figure 6 illustrates the device concept that has been ex-
plored in this paper. The figure shows a series of non-
periodically spaced silicon dioxide stripes that were
written on silicon and profiled using an AFM. Stripe posi-
tions corresponding to 1, —1 and O filter values are indi-
cated. The closest spacing between adjacent lines is 240
nm for a 1 followed by a — 1. Figure 6 also shows how the
wavelengths A, and A3 would be separated from 2, for the
dual passband design of Sect. 3. Of course, complete
separation (or any desired division) between the transmit-
ted and reflected channel would require that the stripes
are of the appropriate height to obtain close to 100%
reflectance (i.e., 0 dB insertion loss). This section will
describe initial material processing experiments aimed at
obtaining fabrication control over the stripe geometry.

Silicon surfaces can be oxidized by applying large elec-
tric potential to them. Various studies have shown prox-
imal probe oxidation process using a biased surface tun-
neling or atomic force microscope tips.>'""'** Many other
writing modes of surface profiling microscopes (SPM)
and various material systems have been reported that
could be employed for fabricating optical devices.” Our
writing experiments are performed with (110) n-type sili-
con. Prior to writing the wafer is cleaned and the native
oxide layer is removed by immersing the wafer in
HCI:H,0,:H,0 (3:1:1) at 70°C for 10 min followed by
20-30 s etching in a 40:1 HF solution.""*” The surface
roughness, as measured by the AFM, is less than 0.3 nm
(rms) if the wafer is processed soon after the residual
oxide is removed. ‘

The oxide lines are written with a Park M5 AFM in

_ room air. A silicon contact mode tip (UL06) mounted on

the conductive holder is biased between —5to —10V
and the sample is grounded. The resistance hetween the
sample surface and ground was measured to be 1000 €.
The tip is placed in contact with the sample and then
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Fig. 7. Close up AFM profiles of (a) oxide line on (110) silicon and
(b) same line after anisotropic wet chemical etching in TMAH.

moved over the surface to write a line. The amount of
oxide and the thickness of the line depends on the volt-
age and the amount of time that the AFM tip is in contact
with the sample. After writing the oxide is profiled with
the AFM.

We have written oxide lines that vary in width from
100 nm to 400 nm and that vary in height from 0.5 to 2.0
nm. The width refers to the maximum width of the base
that can be detected by the AFM. This is limited by
AFM height resolution to 0.08 nm. To the eye, the shape
of the oxide appears to be gaussian (Fig. 7(a)). A 120 nm
width oxide line was produced with an applied voltage of
—10V and a scan speed of 2 um/s. Slower scanning
speeds or multiple passes over the same region produce
wider lines. These oxide lines can be used as a mask to
etch substantially deeper lines.

Based on the analyses of x in Sect. 3, it would be possi-
ble to obtain adequately strong coupling with 2 nm thick
stripes over a very thin guiding layer. However, we have
concerns about residual surface roughness of the wafer
and for these reasons deeper stripes appear desirable.
Crystalline materials, such as silicon can be anisotropi-
cally etched using wet chemical processing.?? Objec-
tions to the limited number of crystalline materials avail-

able can be overcome by using three dimensional pat-

tern transfer methods.?” Furthermore, nearly vertical
sidewalls can be produced in a much wider variety of mate-
rials by reactive ion etching.?'??

In our first experiments we consider anisotropic wet
chemical etching of silicon. In particular we choose (110)
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silicon because the (110) plane is known to ctch as much
as 100X faster than the (111) plane for specific etch-
ants.?" Thus by writing oxide lines on the surface of (110)
silicon that are parallel to the wafer flat we anticipate
that near vertical sidewalls corresponding to the (111)
plane will be formed. The AFM written silicon dioxide
lines are oriented in this way.

A single wafer containing lines of various widths is wet
etched at 90°C in a solution containing 83 ml of 25%wt.
tetramethyl-ammonium hydroxide (TMAH) and 17 ml of
isopropyl alcohol for 15s. AFM protfiles of the etched
structures reveals several interesting results. (1) The
thicker oxide lines etch to a depth of ~ 100 nm while the
thinner lines etch to depths of ~50 nm. (2) The typical
sidewall slope is 30° from vertical. (3) Thicker lines have
a flat surface between the sidewalls while the thinner
lines form a continuously curved hillock. These results
suggest that the thin edges of the oxide are not protect-
ing the line during the entire etch. For the very thin lines
the oxide is being completely undercut and removed.
Figure 7 shows one of the lines before (Fig. 7(a)) and af-
ter etch (Fig. 7(b)). The width across the base of the line
is ~250 nm both before and after etch. After etch the
width of the plateau of the line has narrowed to ~100
nm. Additional studies are needed to find ways to better
protect silicon from etchants, such as modifying oxide
shape or optimizing the properties of the etchant. Alter-
natively, different material processes altogether may
lead to lines of the desired width and depth.

5. Discussion

We have considered the possibility of generalizing the
frequency response of grating reflection filter by em-
ploying signal encoding techniques from computer gener-
ated holography. A specific case of a grating on a slab
waveguide has been considered. Fabrication constraints
set by the limited field of view of current AFM pattern-
ing systems have been considered. One consideration is
that encoded functions generally have lower intensity fre-
quency responses than do periodic structures of the same
length. In order to compensate for these differences the
stripes must be correspondingly deeper than for periodic
structures in order to obtain equivalent insertion losses.
Likewise, the use of phase reversed strip placement for
the dual passband filter requires narrower stripes which
also requires deeper stripes. Even greater depths (or thin-
ner guiding layers) will be needed to extend this ap-
proach from bi-phase to polyphase encoding algorithms.
Already for some of the examples considered here, stripe
aspect ratios (depth over width) in excess 1:1 have been
found.

These aspect ratios can be reduced for designs having
more stripes. Current AFM’s (unlike ebeam pattern
generators) do not include high precision stages neces-
sary to stitch together multiple fields. At least two reason-
able extensions are possible:

(1) Two gratings could be placed in close proximity
to each other. A short region that is unperturbed by a
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grating is placed between the two sections. The guided
wave velocity can be compensated by depth etching, to
properly phase the two sections together. A single etch
depth (i.e. identical etch conditions) can be used for phas-
ing any two sections 1f the length of the guided region
that is exposed to etchant 1s varied.

(2) While commercial AFM’s are quoted with around
2-3 um of stage positioning error, it would be possible to
use the AFM head itself to determine exactly where the
stage moves to. The previously written pattern (or other
prewritten fiducials) can be identified through AFM scan-
ning and the measured offset (and possibly tilt) errors can
be used to offset (and possibly rotate) the patterning in-
structions. This is a quite reasonable approach if one has
the ability and adequate time to modify the AFM control
software.

There are various applications and configurations of
multipassband grating filters. A single grating cus-
tomized to the demands of a subscriber can be used to
tap off a number of non-sequential frequency channels
from a wavelength multiplexed fiber channel. Slanted
gratings (Fig. 1(d)) can be used to form wavelength selec-
tive crosspoints. Arranging these crosspoints an x-y
fashion on a single substrate can be used to realize vari-
ous other network topologies. Programmable filters can
also be envisioned in which arrays of stripes can be in-
dividually placed in or removed from the beam path. Elec-
trostatic attraction could be used to displace the stripes
in a manner similar to micromechanical mirror array tech-
nology of Texas Instruments that is currently used in
video projectors and printing engines.?? CGH encoding
algorithms, such as those described provide the flexibili-
ty and adaptivity to design and compute desired filter
functions instead of storing large tables of anticipated
stripe settings.

In summary this paper has considered the possibility
of nanofabricating multipassband grating filters using
current AFM’s as direct write patterning tools. We have
demonstrated that useful designs are possible even with
the limited writing field of current AFM’s and that there
are approaches that can permit precise field stitching.
Writing times are currently quite slow but not critical for
using AFM’s to develop single experimental or proto-
type devices. Current writing speed can be increased by
using a controlled atmosphere for the silicon oxidation
process or using different material systems which are
known to be faster.?
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Pseudorandom encoding for

real-valued ternary spatial light modulators

Markus Duelli and Robert W. Cohn

Pseudorandom encoding with quantized real modulation values encodes only continuous real-valued
functions. However, an arbitrary complex value can be represented if the desired value is first mapped
to the closest real value realized by use of pseudorandom encoding. Examples of encoding real- and
complex-valued functions illustrate performance improvements over conventional minimum distance
mapping methods in reducing peak sidelobes and in improving the uniformity of spot arrays. © 1999

Optical Society of America
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1. Introduction

Complex-valued spatial light modulators (SLM’s)
greatly simplify the design of transmittance func-
tions for multispot beam steering systems and other
Fourier-transform processors. With arbitrary com-
plex modulation, many desired patterns can be spec-
ified with standard Fourier-transform tables.
However, fully complex SLM’s either are not widely
available or are rather involved to construct.! For
these reasons encoding methods are often used to
approximate fully complex operation.2-¢ In adap-
tive or rapidly updated systems encoding may be pre-
ferred to global optimization methods5 because of its
speed. Because current SLM’s have relatively low
numbers of pixels compared with diffractive optics
and holograms, methods that use group-oriented en-
coding®? are undesirable in that they further reduce
the useful space-bandwidth product. Two general
methods that avoid grouping are pseudorandom en-
coding® (PRE) and minimum distance encoding?®
(MDE). Both methods map each desired complex
value to a realizable modulation value of each corre-
sponding SLM pixel. Most recently these methods
have been evaluated and compared for SLM’s that
produce at least three quantized phase-only values.10

For the case of real-valued ternary modulation (i.e.,
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230.6120, 090.1760, 030.6600.

SLM’s that produce the modulation values of 1, 0, and
—1) it is not immediately evident that PRE can sup-
port fully complex representations. The problem is
that the range of values that can be encoded is limited
to real values between —1 and 1 [Fig. 1(a)]. MDEis
not limited to the real axis, since MDE maps the
desired complex value to the closest modulation
value. As shown in Fig. 1(b) MDE divides the com-
plex plane into distinct regions. Any complex value
in a given region is mapped to the single modulation
value in that region. However, we have noted for
other types of SLM that the accuracy with which the
diffraction patterns approximate the desired diffrac-
tion patterns can be improved on by use of other types
of encoding.10:11

The greatest improvement observed has been by
use of a hybrid encoding algorithm that blends PRE
with a modified MDE algorithm.12 In this method
the desired complex value is mapped to the closest
value that can be produced by PRE. The mapped
value is then pseudorandom encoded to produce the
modified minimum distance PRE (mMD-PRE).
This type of encoding is illustrated for the ternary
SLM in Fig. 1(c). The mMD-PRE is a specific vari-
ant of PRE that permits complex-valued represen-
tation, even with the real-valued ternary SLM.
The mMD-PRE can be contrasted with conventional
minimum distance-PRE (MD-PRE). For the ter-
nary SLM all values would be encoded by use of
MDE [as in Fig. 1(b)] except those real values be-
tween —1 and 1, which would be encoded by PRE
[as in Fig. 1(a)]. For typical complex-valued func-
tions a negligible number of values would be en-
coded by PRE, and therefore the algorithm can be
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Fig. 1. Pixel-oriented encoding methods: (a) PRE, (b) MDE, (c)
mMD-PRE. Method (c) also describes MD-PRE if the desired
function is strictly real.

viewed essentially as being MDE. Two SLM’s that
produce such real ternary modulation are magneto-
optic SLM’s and analog chiral smectic liquid-crystal
SLM’s.13.14

Our objectives in this paper are (1) to demonstrate
the feasibility of complex-valued representation by
use of mMD-PRE with a real-valued ternary modu-
lation characteristic, (2) to demonstrate the improve-
ments over MDE alone, and (8), for the encoding of a
strictly real function, to show the improvements of
MD-PRE over MDE. These encoding algorithms
also illustrate in brief the same general characteris-
tics and performance trends that were reported for
the application of these methods to various quantized
phase SLM’s in Ref. 12.

The paper is organized as follows: We present the
various encoding algorithms; review definitions of the
metrics used to compare them; and then compare the
encoding algorithms, using computer simulations of
two spot array generator designs (one in which the
desired function is strictly real and the other in which
the desired function is complex.)

2. Description of the Encoding Algorithms

A. Minimum Distance Encoding

The MDE algorithm maps each desired complex
value a,; (where i is the pixel index) to the closest
available value (—1, 0, or 1) of the SLM. As illus-
trated in Fig. 1(b), the complex plane is divided into
three decision regions. This mapping can be ex-
pressed as

a; = sgn[Re(a,)]  if %2 < [Re(a,),
a,=0 if [Re(ay)| < %, ey

The performance of the resulting diffraction pattern
from this transmittance function can depend greatly

on the scaling of the desired function a,;. The scal-
ing can be written as
a,; = y exp(jB)ag; (2)

where the maximum magnitude of a/; for i = 1-N is
unity. Itis typical to optimize the performance met-
ric of interest as a function of the two parameters +y
and B. These parameters are also used for the same
purpose in the blended algorithms considered here.

B. Pseudorandom Encoding

PRE is a statistically based method of encoding in
which one modulation value from a range of possible
values is selected with a computer-generated random
(i.e., pseudorandom) number. The statistical prop-
erties of the random-number generator are designed
so that the average modulation value is identical to
the desired complex value [see Eq. (1) in Ref. 10].
The diffraction pattern produced when we encode the
values a,; of the desired transmittance function has
an average intensity that is identical to the desired
diffraction pattern plus a noise background. Addi-
tional theory and algorithm derivation procedures for
a wide variety of modulator characteristics were pre-
sented in Refs. 15-17.

C. Modified Blended Encoding

Following the two procedures above, we directly state
the mMD-PRE algorithm. Any desired value found
on the real axis between —1 and 1 is encoded by PRE
[Fig. 1(a)]. Desired values that have real parts that
lie between —1 and 1 are projected to the closest point
on the real axis, and then the projected value is en-
coded by PRE [Fig. 1(c)]. Values that have real val-
ues that are greater than 1 or less than —1 map to the
closest available modulation values 1 and —1, respec-
tively. The mathematical specification of the encod-
ing algorithm associates a probability with the
desired value a,; according to

p = [Re(a,)|. ®
With this value of probability the encoding formula is
if 0= S; < b
if P =5 = 1, (4)

a; = sgn[Re(a,)] orl1<p,

a,=0
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where a; is the actual modulation selected for the ith
modulator pixel and s; is a pseudorandom number
selected from the uniform distribution with mean 0.5
and a spread of unity. Equation (4) shows that the
closer the real part is to an actual modulation value
the more frequently that value is selected. For cases
in which the real magnitudes exceed unity, p; cannot
be considered to be a probability and random selec-
tion cannot be used. Instead MDE is used that cor-
responds to the first line of Eq. (4) when the second
part of the if statement is true. Also note that, if the
desired function is strictly real, then Eqgs. (3) and (4)
also describe MD-PRE. That is, the real values be-
tween —1 and 1 are encoded by PRE, and the values
with magnitudes greater than unity are encoded by
MDE. In this study both strictly real and fully com-
plex desired functions were encoded, which permits
comparisons of mMD-PRE with MDE and PRE indi-
vidually and comparisons of MD-PRE with MDE and
PRE individually.

3. Design of Simulation Experiments

The real-valued and the fully complex desired func-
tions are designed to produce a 7 X 7 array of uniform
intensity spots in the diffraction plane. They are
based on the functions reported in Tables 1 and 3 of
Krackhardt et al. for 1 X 7 spot arrays.1®8 Their func-
tions on conversion to biamplitude (1, —1) and analog
phase-only functions have the highest possible dif-
fraction efficiency (their transform from desired func-
tion to realizable modulation is equivalent to MDE
with v = ®). Our two desired functions are two-
dimensional rectangularly separable functions that
are constructed when we cross their one-dimensional
functions. The function is sampled to produce a
128 X 128 pixel matrix that consists of a 4 X 4 array
of unit cells. Additionally, a phase ramp is added to
the fully complex function so that it reconstructs off
axis. The phase ramp makes the encoded function
essentially independent of the phase parameter B.
Therefore only vy is varied in the evaluation of the
encoding algorithms. For purposes of evaluating
the encoding algorithms with real-valued functions,
again, only v is varied.

The key metrics of interest describe the accuracy
(or fidelity) with which the actual reconstruction
matches that for the desired function. These are the
nonuniformity (NU) of the spot array, which is cal-
culated as the standard deviation of the peak inten-
sities of the 49 spots divided by the average intensity
of the spots, and the signal-to-peak-noise ratio (SPR),
which is the ratio of the average peak intensity of the
spots to the maximum noise peak found in the dif-
fraction pattern (excluding the square region that
contains the 7 X 7 spot array). We feel that these
metrics are especially important in real-time systems
for which it is not practical to perform designs on the
fly with numerically intensive optimization.

It is also common to report diffraction efficiency 1 for
most designs. We can calculate this by first summing
the intensities of the 49 spots, dividing by the sum of
all intensities in the diffraction pattern, and then mul-
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Fig. 2. Performance of MDE and MD-PRE as a function of the
magnitude scaling parameter for encoding the real-valued func-
tion.

tiplying this by an additional factor that accounts for
the absorption by the zero-valued modulation states.
This factor is simply the ratio of the unity magnitude
values divided by the total number of SLM pixels. We
will show that there is a continuous trade-off between
fidelity and diffraction efficiency and the best fidelity is
achieved when the diffraction efficiency is less than the
maximum possible.

4. Comparison of the Encoding Methods
Figure 2 shows how the performance of encoding the

Table 1. Performance for Encoding the Real-Valued Function

Encoding v n (%) SPR NU (%)
MD-PRE* 1.1 27 41 6.3
MDE* 1.13 38 79 104
MD-PRE? 1.3 36 70 8.1
MDE? 1.7 51 18 20.3
MDE 0 73 5.1 45.0

*Minimum NU.

bMaximum SPR.




Fig. 3. Diffraction patterns for (a) MD-PRE for y = 1.1 and (b) MDE for y = 1.13 for the real-valued desired function and (c) mMD-PRE for
v = 1.05 and (d) MDE for y = 1.9 for the complex-valued desired function. The intensity images are saturated so that the full white gray
scale corresponds to Vo of the average intensity of the 49 spots. Also, the images are shown rotated by 45° from the x-y coordinate system.

real-valued function by use of MDE and MD-PRE  value of NU are found for y somewhat greater than
depends on the parameter y. For both encoding al-  unity. MD-PRE always achieves significantly
gorithms the largest value of SPR and the smallest  larger values of SPR and somewhat smaller values of
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Fig. 4. Performance of MDE and mMD-PRE as a function of the
magnitude scaling parameter for encoding the complex-valued
function.

NU than does the MDE. These trends and observa-
tions are in agreement with those reported in Ref. 12
for various multiphase SLM’s. The trends are fur-
ther brought out in Table 1, which reports the per-
formance for each algorithm when NU is minimum
and when SPR is maximum. The table also com-
pares these results with MDE for y = « (i.e., the
Krackhardt et al. biamplitude design). Clearly, the
fidelity is much improved by a trade-off of the diffrac-
tion efficiency.

Figures 3(a) and 3(b) show a portion of the
computer-simulated on-axis diffraction pattern for
the MD-PRE and MDE designs reported in Table 1
for minimum NU. Although speckle noise is evident

Table 2. Performance for Encoding the Complex-Valued Function

Encoding v n (%) SPR NU (%)
mMD-PRE* 1.05 12 20.4 7.2
MDE* 1.90 37 6.5 17.6
MDE o 40 5.3 26.1

“Minimum NU.
3808 APPLIED OPTICS / Vol. 38, No. 17 / 10 June 1999

throughout the image of the MD-PRE encoding, there
are no significant noise spikes. In Fig. 3(b) most of
the background area is pure black; however, there are
a number of noise spikes that are quite bright and
evident. These noise spikes are due to the inherent
nonlinearity of mapping from the continuous real-
valued function to the three-valued quantized modu-
lator. The systematic method of mapping in MDE
induces strong harmonic terms at sum and difference
frequencies of the desired modulation. MD-PRE
tends to reduce this effect by distributing noise en-
ergy more uniformly over the entire diffraction plane.

Figure 4 presents the performance of encoding the
fully complex function by MDE and mMD-PRE as a
function of y. The same sort of trends are seen as a
function of vy and in comparing MDE with mMD-PRE
as were seen in comparing MDE with MD-PRE. The
performance metrics for each algorithm are reported
in Table 2. The minimum NU metrics are reported,
since they differ only slightly with the maximum SPR
design.

The simulated diffraction patterns for the mini-
mum NU design mMD-PRE and MDE designs are
given in Figs. 3(c) and 3(d), respectively. Because
the SLM can produce only real values and the design
produces an off-axis reconstruction, there is a mirror
symmetry in both diffraction patterns. Again
mMD-PRE has higher SPR than MDE, owing to its
distributing the noise over the entire diffraction
plane. Comparing Fig. 4 with Fig. 2, we see that the
SPR and the diffraction efficiency are substantially
smaller in Fig. 4. This is primarily a result of the
energy being divided between the desired and the
mirror order. The reduction in SPR is also evident
when we compare Figs. 3(a) and 3(b) with Figs. 3(c)
and 3(d), where the background noise is more evi-
dent. However, even with much reduced diffraction
efficiency, good performance is possible. As long as
the mirror image is acceptable, it appears that a ter-
nary SLM can do a good job of multispot beam steer-
ing. Much better performance would be possible
with traditional diffractive optical element design ap-
proaches. This would involve reoptimizing the de-
sign even if the spot array were simply steered to a
new location. Such operations would be extremely
cumbersome and would limit the adaptivity of many
real-time SLM-based systems.

5. Conclusions

In this paper we extend and reinforce the results
originally made in Ref. 12, using quantized phase
SLM’s. For purposes of producing a Fourier-
transform hologram from a desired fully complex-
valued function the most faithful encoding method
(as measured by SPR and NU) is modified-
minimum-distance-pseudorandom encoding (mMD-
PRE). Though there is a mirror image for off-axis
reconstructions, the real-valued ternary SLM can
represent complex-valued functions with good fidel-
ity and moderate diffraction efficiency by use of the
mMD-PRE algorithm. The ability to represent com-
plex values on SLM’s of such extremely limited mod-




ulation is especially useful for reducing the time and
cost of prototyping SLM’s and SLM-based systems.
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1 Introduction

Abstract. Most spatial light modulators (SLMs) are limited in that they
cannot produce arbitrary complex modulations. Because phase and am-
plitude are usually coupled, it is difficult to computer design appropriate
modulation patterns fast enough for the real-time applications for which
SLMs are suited. Dramatic. computational speedups can be achieved by
using encoding algorithms that directly translate desired complex values
into values that the modulator can produce. For coherently illuminated
SLMs in a Fourier transform arrangement, pseudorandom encoding can
be used. Each SLM pixel is programmed in sequence by selecting a
single value of pixel modulation from a random distribution having an
average that is identical to the desired fully complex modulation. While
the method approximates fairly arbitrary complex modulations, there are
always some complex values that are outside the encoding range for
each SLM coupling characteristic and for each specific pseudorandom
algorithm. Using the binary random distribution leads to methods of
evaluating and geometrically interpreting the encoding range. Evalua-
tions are presented of achieving fully complex encoding with SLMs that
produce less than 2+ of phase shift, identifying an infinite set of encoding
algorithms that encode the same value, identification of the maximum
encoding range, and geometric interpretation of encoding errors. © 7999
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complex SLM is commercially available, however, and the
most recent demonstrations of fully complex SLMs require

The encoding of fully complex functions onto computer
generated Fourier transform holograms was first introduced
by Brown and Lohmann.!? The method and other subse-
quent fully complex encoding methods, reviewed in Refs. 3
to 5, provide the ability to transparently specify desired
far-field diffraction patterns in terms of Fourier transform
identities, tables and other well known relationships, many
that are known in closed form. An example of a system
application is the potential of using phase-only spatial light
modulators (SLMs) to produce and steer multiple spots in
arbitrary directions independent of each other in real time.
The ability to directly encode and represent desired com-
plex valued modulation provides the numerical efficiency
required to design a continuous stream of modulations in
real time. Other real-time applications that can benefit from
complex-valued representations are considered in Ref. 5.
Additional advantages of complex valued representations in
terms of the fidelity of computer generated holograms
(CGHs) and diffractive optical elements were also consid-
ered by Kettunen et al.” Certainly the recognition of these
various advantages has also spurred the development and
demonstration of fully complex modulators.® ! No fully
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the use of multiple SLMs. For these reasons, complex-
valued representations continue to be of interest.

Most of the early CGH design methods treat multiple
pixels as a single group to realize a single complex value.
By grouping pixels, the space-bandwidth product of the
signal is necessarily less than that of the CGH. Therefore
the useable bandwidth of the reconstruction is limited to
only a fraction of the entire bandwidth set by the pixel
sample spacing. This is especially important today when
electrically addressed SLMs are relatively expensive and
consist of a small number of pixels compared to fixed pat-
tern CGHs and diffractive optics.

One early technique that does use a single pixel to rep-
resent a complex value is the original kinoform, in which
the magnitudes of each complex value are set to unity.2
Due to noise and inaccuracies in the reconstruction,” how-
ever, most phase-only CGHs now are designed using vari-
ous numerically intensive global search algorithms.! 18 In
some real-time systems, the filter design may need to be
done on-line, which may not enable global searches to be
performed. Other single pixel methods are the minimum
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Euclidean distance (MED) methods for matched filter' and
CGH (Ref. 20) design. MED optimizes a performance met-
ric as a function of a complex-valued factor that scales all
the desired complex values. The performance metric is cal-
culated for each value of the scale factor. Once the opti-
mum scale factor is found, each desired complex value is
mapped to the closest realizable value on the modulation
characteristic. This two parameter search requires consider-
ably less computation to perform than the global searches.

MED and related studies?? are important in that they
describe filter design methods in such ways that the meth-
ods apply to a wide variety of modulation characteristics.
This recognizes the fact that current electrically and opti-
cally addressed SLMs have widely varied modulation char-
acteristics that are usually not accurately described as being
pure phase or amplitude modulators. Instead, these SLMs
exhibit various degrees of coupling between amplitude and
phase, as reported in a number of papers on SLM modula-
tion characteristics.2*"

Pseudorandom encoding,?’ the subject of this paper, is a
single pixel method that has been primarily applied to CGH
design. The procedure for mapping a desired complex
value to a realizable pixel modulation is a noniterative and
numerically efficient operation. When the CGH is illumi-
nated by a uniform plane wave, the far-field diffraction
pattern approximates the desired reconstruction in an aver-
age sense. Superimposed on the desired reconstruction is a
white noise pattern that covers the entire reconstruction
plane. The energy in the noise is equivalent to the errors
between the desired complex values and the realized val-
ues. By spreading the noise over the full extent of the re-
construction plane, the noise level is, on average, the lowest
possible for a fixed level of error energy. This can be
compared?® with error diffusion methods for CGHs. The
reconstruction from the error diffused hologram also pro-
duces a noise cloud, but the noise cloud and desired recon-
struction appear in different regions of the reconstruction
plane. Thus, unlike error diffusion, pseudorandom encod-
ing enables the desired reconstruction to be formed any-
where in the full extent of the reconstruction plane. The
noise level from psendorandom encoding a particular signal
still might be unacceptably high, however, there are simple
calculations that can be performed prior to encoding that
measure the noise,>”?° and many pseudorandom encoded
designs with ne%ll%lble noise backgrounds have been re-
ported to date.””

Originally pseudorandom encoding was introduced?®” for
phase-only SIMs, and then ways to generalize this method
to amplitude-phase coupled modulators were considered.>!
A useful result from this study was the development of a
closed form encoding algorithm in which the values of any
given coupled modulatlon characteristic could be explicitly
placed in the formula! However, numerical evaluations
show that some complex values could not be encoded by
this method. These observations led to more fundamental
analyses of the properties of pseudorandom encoding, in-
cluding the encoding range and the amount of error signal
produced by encoding. The greatest progress was made by
using binary statistics that, in addition to numerical ease,
provide useful geometrical interpretations of various prop-
erties of the pseudorandom encoding methods. This paper
specifically describes this analysis technique and presents
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examples that, in addition to illustrating the analysis tech-
nique, are used to identify properties of pseudorandom en-
coding that were not previously known. Sec. 2 reviews the
mathematics of pseudorandom encoding and specializes the
problem for the use of binary statistics. Then in Sec. 3,
these tools are applied to evaluating the encoding range and
encoding errors for SLMs having a variety of modulation
characteristics.

2 Pseudorandom Encoding of Fully Complex
Functions

2.1 General Description of Pseudorandom
Encoding

All psendorandom encoding algorithms specify the modu-
lation of any given pixel in terms of a user specified ran-
dom variable. The statistical properties of the random vari-
able are selected in such a way that the expected value, or
average, of the random modulation is identical to the de-
sired, but unobtainable, fully complex value. The desired
complex-valued modulation is written a,=(a.,¥,) and the
resulting modulation by the SLM is a=(a,y), where the
ordered pairs are the polar representations of the complex
quantities. Complex quantities are indicated by bold type.
The pseudorandom encoding design statement is, in gen-
eral, to find a value of the ensemble average

(a)= f ap(a)da, (1)

of the random variable a such that (a)=a,. The statistical
properties of a are determined by its probability density
function p(a). The probability density function (pdf) is se-
lected to ensure that the expected value of a and the desired
complex value are identical. This selection of a pdf corre-
sponds to solving the integral equation, Eq. (1) for p(a).
The solution is not unique since the integral in Eq. (1) is a
projection from the multidimensional space of a into a
single value (a). After an appropriate density function is
determined, the desired complex value a, is encoded by
drawing a single value of a from a random distribution
having the density function p(a). Since the value of a is
found deterministically by computer, rather than from a
random process occurring in nature, the procedure has been
termed pseudorandom encoding.

This general pseudorandom encoding prescription is ap-
plied to each pixel in sequence to encode the desired spa-
tially varying complex modulations a,. Using i as the spa-
tial coordinate, the spatial samples of the desired complex
modulation, the density function and the random modula-
tion can be written as a,;, p;(a;) and a;. (This indexing
scheme can be conveniently applied to 1-D or 2-D arrays
and it is not restricted to equally spaced samples.)

The far-field diffraction pattern of the encoded modula-
tion a; approximates the desired diffraction pattern. This
can be seen by comparing the intensity of the desired far-
field diffraction pattern with the ensemble average diffrac-
tion pattern that would result from the encoded modulation.
The intensity pattern of the desired diffraction pattern from
an N sample fully complex SLM is
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where F{-} is the Fourier transform operator, A ;(f,) is the
Fourier transform of the transmittance of the i’th pixel of
the SLM, and f, is the spatial coordinate across the Fourier
plane. The expected intensity of the diffraction pattern from
the encoded modulation was derived for the condition that
the random variable a; for the i’th pixel is statistically in-
dependent of a; for all j not equal to i. Under the pseudo-
random design condition (a;)=a,; the ensemble average
pattern is expressed?’

N
(1(fx))=1c(fx)+i=21 (ALY - A, €)

where A;(f,) is the Fourier transform of a;. The expected
intensity consists of two terms. The first term is the desired
diffraction pattern from Eq. (2). The second term, the N
term summation, represents the average level of back-
ground (i.e., speckle) noise that is produced as a result of
the randomness of the modulation. It is the error signal
referred to in the introduction. For the case of pixels that
are modeled as pointlike apertures, the average background
noise is of constant intensity for all frequencies f (i.e., it is
white.)

2.2 Encoding Error Defined

Eq. (3) identifies individually the noise contribution of each
pixel. Therefore insight can be gained by evaluating the
noise contribution in the modulation plane. Under the as-
sumption that the pixels are infinitesimally wide apertures,
the inverse Fourier transform of the noise from a single
SLM pixel [i.e., a single term from the summation in Eq.
(3)] gives the encoding error

e=(la]*)—|a|?, )

where the subscript has been dropped to simplify presenta-
tion. (If the pixels are finite width, then an autocorrelation
of the pixel aperture function would also be included in the
formula.?” This term is dropped because it adds no essential
insight to the current discussion.) In the next subsection
Egs. (1) and (4) are specialized for the case where a is a
binary random variable.

2.3 Pseudorandom Encoding with the Binary
Distribution and Geometric Interpretation

The probability density function for the binary distribution
is

p(a)=dé(a—a,)+(1—d)é(a—ay), &)

where &-) is the Dirac delta function, a; and a, are a pair
of complex values from the modulation characteristic and d
and 1—d are the probabilities of selecting a, and a, . Since
d is a probability, its value is between 1 and 0. Using the
binary density function in Eq. (1) gives an expression for
the effective complex amplitude of

Fig. 1 Geometric relationships for pseudorandom encoding the de-
sired value a, using random binary selection of modulator values a,
and a,.

(a)y=da;+(1—d)a,. (6)

Eq. (6) is recognized as the expression for a line as a func-
tion of the variable d. For d=1, a, is encoded, for d=0, a,
is encoded and for values of d between 1 and 0, any value
lying on the line segment between a; and a, can be en-
coded. Therefore, the encoding range of pseudorandom bi-
nary encoding is the line segment that connects a; to a, as
illustrated in Fig. 1.

2.3.1 The binary encoding formula

For a given value of d the desired complex value a.(d)
=(a) is represented (i.e., encoded) by a single randomly
selected value

a=a; if 0ss=d,
)

a=a, if d<s<l,

where s is a uniformly distributed random number between
0 and 1.

2.3.2 Binary encoding error

Evaluating Eq. (4) using Egs. (5) and (6) and the expecta-
tion

(la>)=dlai|*+(1-d)|a,|%, ®
the encoding error can be written
e=d(1-d)[a}+a;—2a,a; cos (1~ ¥)]. ©)

The error is written in terms of the magnitudes and phases
of a,=(a;,¥;) to show that the term in the brackets is the
familiar formula for the ‘‘law of cosines,”” which gives the
squared magnitude of the line segment a; —a,. Thus the
encoding error can be written

e=d(1—d)|a;—ay|2. (10)

Using the main premise of pseudorandom encoding that
a,=(a), Eq. (6) can be rearranged to make the two rela-
tionships evident
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Fig. 2 Multiple possible pairs of modulation values (joined by
chords) that can pseudorandom encode the desired value a, for a
circular modulation characteristic. This construction shows that
there are an infinite number of possible binary pairs that encode a, .

a,—a,=d(a;—ay),

(11)

a,—a,=(1—d)(a;—ay).

These lengthé are indicated on Fig. 1. Using Eq. (11) in Eq.
(10) shows that binary pseudorandom encoding error can
be expressed as

8=Ial'—ac”ac“32|' (12)

Written in this form, the encoding error can be directly
interpreted as the product of the lengths of the line seg-
ments a; to a, and a, to a,.

This section has (1) identified [following Eq. (6)] that
the pseudorandom encoding range for any pair of complex
valued points is the line segment connecting those two
points and (2) derived [Eq. (12)] that the encoding error is
equal to the product of the lengths of the two line segments
that connect a; to a, and a, to a,. These two basic results
provide a useful tool for evaluating and understanding the
encoding properties of various coupled SLM characteristics
and, ultimately, developing new pseudorandom encoding
algorithms for specific modulation characteristics. Their ap-
plication to the analysis of a variety of coupled modulation
characteristics is illustrated by the examples that follow in
Sec. 3.

3 lllustrative Analyses of Pseudorandom
Encoding on Coupled SLMs

3.1 Phase-Only and Circular Modulation
Characteristics

Figure 2 shows a circular modulation characteristic on the
complex plane. This is more general than phase-only be-
cause the center of the modulation characteristic (or curve)
is not necessarily located at zero. Off centered curves are
typical of birefringent liquid crystal SLMs used with a po-
larizer. As the polarizer is rotated away from the extraordi-
nary axis, the center of the modulation characteristic moves
away from the origin in the complex plane. Thus this char-
acteristic can be viewed as coupled in amplitude and phase.
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Fig. 3 Geometric relationships used to prove that for a circular
modulation characteristic, the encoding error is identical for encod-
ing with any pair of points from the modulation characteristic that are
collinear with the desired value a, .

However, it is not necessary to write the relationship be-
tween amplitude and phase for the evaluations to be con-
sidered here.

Figure 2 illustrates two interesting properties of pseudo-
random encoding for circular modulation characteristics.
First, it can be seen by repeated plottings of Eq. (6) for
different values of a; and a, that any complex value inside
the circular characteristic can be encoded by choosing a
pair of points from the characteristic that are colinear with
the desired complex value a.. Second, it can be seen that
since probability d of selecting one endpoint can never ex-
ceed unity, no complex values outside the characteristic can
be pseudorandom encoded. Third, it can be seen that there
are multiple pairs of points that can encode the same value
a,. Obviously there are an infinite number of solutions.
This nonuniqueness of pseudorandom encoding was de-
scribed in general in the text following Eq. (1).

If there are multiple solutions possible, is there one par-
ticular one that produces the least encoding error? It turns
out that for circular characteristics, the encoding error is
identical for all possible solutions. This can be proved us-
ing the geometric constructions in Fig. 3. For this statement
to be true then according to Eq. (12)

Sc=lll2=l3l4, (13)

where /; are the distances from the points a; to a,. The line
segment a; to a, in Fig. 3 passes through the center of the
circle. The radius of the circle can be assumed to be unity
with no loss in generality. Also defining x=1—1/; as the
distance from the center to a_ leads to a straightforward
derivation. The law of cosines gives the expressions

I%—lel cos y—(1-x2)=0,
' (14)
I§+2xlz cos y—(1—x2)=0,

where — cos y=cos (77— f}) has been used to eliminate the
complementary angle 7— i from the second expression in
Eq. (14). The positive roots to the quadratic equations are

1,=x cos Y+ (x? cos? Y+ 1—x2)12,
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Fig. 4 Constructions used in the comparison of the encoding error
for biradial and circular modulation characteristics. We show in the
text that when encoding the desired value a., the error is always
lower if the biradial modulation values a, and ag are used rather
than the values a, and a, from the single radius portion of the modu-
lation characteristic.

I,=—x cos Y+ (x? cos? Y+ 1—x%)12, (15)
The product of the two lengths then simplifies to
80=3112=(1 +x)(1 _X), (16)

which is independent of angle ¢ and which is seen by in-
spection of Fig. 3 to be identical to /3/,.

3.2 Biradial Circular Modulation Characteristics

Figure 4 shows a circular SLM characteristic that, in addi-
tion to the Fig. 2 characteristic, also can produce a modu-
lation state at the center of the circle. For characteristics
centered on the origin, this would be a phase-only SLM
that also contains a 0 state. Using the geometric construc-
tion in Fig. 4, we can see that the encoding error produced
by encoding with the points a5 and a, is

8b=15l4=X(1—X). (17)

From the result in Eq. (16) or from the geometry in Fig. 4
we can see that encoding with the central point always
produces less error than does biamplitude encoding with a
phase-only SLM. For a unit radius circular characteristic
x=d and the ratio of the two types of error reduces to

S 141 18
&5 T (18)

Thus the encoding errors are always lower for the biradial
SLM and substantially better when the desired complex
values are close to zero.

3.3 Non-27 SLMs, Discrete SLMs and Convoluted
Modulation Characteristics

Figure 5 shows a phase-only SLM that does not produce a
full 277 of phase modulation. The curve starts with point ag
and ends with point a;. Obviously, any value on a line
between these two points can be pseudorandom encoded.
Also line segments can be drawn that fill in the interior of
the region bounded by the modulation curve and the ex-

// ////////////// a5
f “encodable range .

fully complex extremal

encoding
range

non-27t phase-only curve

Fig. 5 Encoding range (shaded) for a non-27 phase-only SLM
(thick curve). The thin line represents the values that can be pseu-
dorandom encoded using the endpoints ag and a; of the modulation
characteristic. The fully complex range is the largest circular region
surrounding the origin. Therefore the non-2m modulator can repre-
sent a fully complex modulator if the desired complex-valued modu-
lation are scaled so that their values fit within the fully complex re-
gion.

tremal line segment a to a; . The interior region (shown by
both shading patterns) forms a convex set. The key result of
this analysis is that by appropriately scaling the desired
complex values (to fit within the circular, fully complex
region in Fig. 5) it would be possible to pseudorandom
encode any fully complex function with the non-2 7 phase-
only characteristic.

Figure 6 shows a convoluted characteristic. Some com-
plex values that in a sense are outside the modulation char-
acteristic can also be encoded by binary pseudorandom en-
coding. There are three extremal line segments in Fig. 6
that, together with the convex portions of the modulation
curve, define the boundary on the convex set of encodable
values. Using binary encoding analysis to evaluate the en-
coding range shows that the encoding range can be signifi-
cantly larger than one might at first assume.

The encoding range of a discrete modulation character-
istic is evaluated in Fig. 7. Here only values on the six line

extremal encoding range

non-convex modulation curve

Fig. 6 Encoding range for a nonconvex modulation characteristic
(thick curve). The three thin lines together with the convex portions
of the SLM bound the convex region that can be pseudorandom
encoded. The two shading patterns are used to distinguish the non-
convex region inside the modulation characteristic from the addi-
tional range that the analysis using the properties of binary statistics
has identified as being encodable.
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a

a5
a

Fig. 7 Encoding range for a four-value discrete modulation charac-
teristic. Binary pseudorandom encoding only encodes values on the
six line segments. However, any other value (e.g., a;) in the convex
region bounded by the lines connecting ag, ag, a,o, a1, and ag
could be encoded by a combination of binary encoding algorithms.

segments connecting the four realizable points can be pseu-
dorandom encoded wusing binary distributions. However,
other random distributions can be used to encode the entire
region surrounded by curve ag,ag,a;9,a1;,a3. One ap-
proach for doing this is to build up more involved distribu-
tions out of combinations of binary distributions. The
dashed line in Fig. 7 represents the set of values that could
be encoded between ag and a, if the value a, were part of
the modulation characteristic. However the value a, is the
result of binary pseudorandom encoding using the values
ag and ag, and it is not part of the characteristic. Nonethe-
less it is possible to randomly select between ag and a, so
that the desired value a, can be realized on average. This
two step encoding formula was evaluated as being equiva-
lent to a single encoding formula using a ternary distribu-
tion that selects between the points ag, ag, and aj. A
derivation of such a formula (though not applied to discrete
SLMs) is given in Ref. 31. From this analysis, it becomes
apparent that by varying the value of a, it is possible to
encode the entire region interior to ag,ag,a;9,ag using a
ternary encoding formula. The region interior to
ag,a,0,31,33 can be pseudorandom encoded in a similar
manner.

4 Summary and Conclusions

The use of binary statistics leads to extremely simple pseu-
dorandom encoding formulas. Perhaps the greatest value of
using the binary distribution is that it provides significant
insight and even a graphical interpretation of the operation
and performance of pseudorandom encoding. Evaluations
have been presented for a variety of amplitude-phase
coupled SLM characteristics. In each case a convex region
was identified by simple graphical constructions. An ex-
tremely simple formula for determining the encoding error
was presented. Applying it to circular SLM characteristics
showed there to be no advantage as to which pair of modu-
lation values are used in the encoding formula. For noncir-
cular SLM characteristics, however, significant reductions
in encoding error are possible. We also found that phase-
only SLMs that produce phase modulations greater than 7
but less than 27 can also be pseudorandomly encoded with
fully complex functions. Also discussed were ways to build
up more complicated functions out of combinations of bi-
nary distributions. This was used to demonstrate that dis-

366 Optical Engineering, Vol. 38 No. 2, February 1999

crete modulation characteristics can represent fully com-
plex functions over a continuous region in the complex
plane. This result is especially significant in light of the
digital addressing of SLMs and the small number of phase
steps used in most multilevel binary diffractive optics.
Therefore, this analysis method proves to be a useful tool
that can accelerate the development and broaden the appli-
cability of pseudorandom encoding algorithms to a wide
variety of amplitude-phase coupled modulator characteris-
tics.
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Pseudorandom encoding is a statistical method for designing Fourier transform holograms by mapping ideal
complex-valued modulations onto spatial light modulators that are not fully complex. These algorithms are
notable because their computational overhead is low and because the space-bandwidth product of the encoded
signal is identical to the number of modulator pixels. All previous pseudorandom-encoding algorithms were
developed for analog modulators. A less restrictive algorithm for quantized modulators is derived that per-
mits fully complex ranges to be encoded with as few as three noncollinear modulation values that are sepa-
rated by more than 180° on the complex plane. © 1999 Optical Society of America [S0740-3232(99)02001-3]
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1. INTRODUCTION

A. Rationale for Using Pseudorandom Encoding for the
Design of Fourier Transform Holograms

The first computer-generated hologram (CGH) solved the
problem of representing complex-valued modulations
with a binary amplitude-only transmittance.! High-
quality reconstructions were possible because of the high
spatial resolution of large-area plotters (followed by suc-
cessive photographic reductions). Since then various
CGH algorithms have been developed in response to the
particular physical properties of the modulating
medium—physical properties such as modulating type:
amplitude-only, phase-only, or coupled amplitude—phase
modulation; modulation levels: continuous or quantized;
spatial structure: continuous or discretely sampled; spa-
tial resolution/space-bandwidth product: low to high;
and lépdate rate: fixed-pattern to programmable in real
time.

CGH algorithms are also shaped by the intended appli-
cation. For example, for today’s fixed-pattern diffractive
optic Fourier transform holograms that are replicated en
masse, there is no major time constraint in employing de-
sign algorithms that use numerically intensive optimiza-
tions and search strategies. However, if individual
custom-designed CGH’s are to be used by a large cus-
tomer base (e.g., a unique CGH for each holder of a na-
tional credit card), then the amount of time required to
design (and also to fabricate) each CGH should be on the
order of 1 5.2 Computationally intensive design algo-
rithms may also not be appropriate for many optical pro-
cessors based on spatial light modulators (SLM’s); espe-
cially, adaptive processors that incorporate new
information into newly designed SLM modulations on the
fly. It is the later time-critical applications that the al-
gorithms presented in this paper are designed to address.

Methods that we refer to as encoding are especially
suitable for fast design of modulations because they cal-
culate the mapping between each desired complex value
and each modulator pixel in sequence [see Fig. 1(a)l. En-
coding was the principal method of designing CGH’s be-

fore 19738. With the work of Gallagher and Liu on itera-
tive encoding,® there has been a continuing use and
refinement of computationally intensive optimization and
global search methods to design Fourier transform holo-
grams. For time-critical applications we believe that the
advantages of speed and flexibility of encoding are prefer-
able to the performance advantages (especially, diffrac-
tion efficiency) of the slower iterative methods.

A second important aspect of encoding onto real-time
SLM’s is that today’s SLM’s have far fewer pixels (i.e.,
space-bandwidth product) than their earlier counter-
parts, the fixed-pattern CGH pen plots. For the earlier
CGH algorithms, it was reasonable to cluster or group
pixels together, thereby reducing the space-bandwidth
product of the encoded signal by a factor equal to the
number of pixels in each group. However, given the low
pixel count and the relatively large cost of current SLM’s,
it is important to utilize as much of the space—bandwidth
product of the SLM as possible.

These two considerations on computational speed and
bandwidth utilization led to the development of pseudo-
random encoding,*® a class of algorithms that encode in-
dividual complex values to individual SLM pixels. Since
each given value encodes to an individual pixel rather
than a group, the space-bandwidth product of the modu-
lation (for periodically sampled SLM’s) is identical to the
number of pixels in the SLM.

B. Developments in Pseudorandom Encoding Leading
toward Ternary Pseudorandom Encoding

The pseudorandom-encoding process represents desired
fully complex values (on SLM’s that do not produce a com-
plete set of complex values) through the statistical ap-
proximation known as the law of large numbers.” A
unique random distribution of the available pixel modu-
lations is specified for each desired complex value such
that the average modulation equals the desired complex
value. Under this set of conditions, the resulting Fourier
plane intensity pattern will, on average, produce the de-
sired Fourier plane diffraction pattern plus a broadly
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Fig. 1. Systems definition of complex-valued encoding. (a) Sys-
tems viewpoint of the Fourier transform computer-generated ho-
logram. A desired complex-valued signal is encoded into a real-
izable SLM modulation. This signal is decoded through
diffraction into a spectrum that approximates the desired
complex-valued spectrum. (b) Systems viewpoint specialized for
pseudorandom encoding. The desired complex-valued signal
a,(x) is pseudorandom encoded (PRE) to produce the realizable
modulation a(x). The observed intensity diffraction pattern
I(f ), which is the squared magnitude of the Fourier transform
of a(x), approximates the desired intensity diffraction I,(f ) in a
statistical sense. Specifically, the expected value of I(f), i.e.,
{I(f)), is the desired diffraction pattern I,(f ) on a background
of white noise.

spread pedestal that represents the average level of back-
ground noise* [see Fig. 1(b)l. According to the law of
large numbers, the actual diffraction pattern will approxi-
mate the average pattern with increasing accuracy as the
number of pixels in the SLM is increased.® The back-
ground noise in the actual pattern is a speckle pattern,
which can be either negligible or dominant, depending on
the specific complex-valued function that is to be encoded.
Some simple metrics calculated from the desired complex
function have been described that can be used to provide
designers advance knowledge about the quality of each
particular encoding.%® Also, in Section 5, a more gener-
ally applicable model of signal-to-noise ratio (SNR) is de-
veloped.

Until now, pseudorandom-encoding algorithms have al-
ways been derived under the assumption that the SLM
produces a continuous range of values (e.g., phase-only or
coupled amplitude). In one study a continuous (phase-
only) modulation has been augmented with a single quan-
tized (zero-amplitude) modulation,® but this algorithm
does not encode a fully complex range of values if the con-
tinuous, unit-amplitude portion of the modulation curve
is quantized. However, a key result of this study that is
fundamental to the development of pseudorandom encod-
ing on quantized SLM’s is the realization that any com-
plex value contained on the line between two complex-
valued points can be pseudorandom encoded. By
repeatedly using this result for all possible pairs of points
on the modulation characteristic, one can identify the en-
coding range of any given SLM.6 The complex values
identified as encodable by this geometric construction al-
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ways form a convex set. This analysis procedure was
also used to consider the feasibility of pseudorandom en-
coding on quantized SLM’s.? The results in Ref. 9 lead to
the conclusion that with three properly chosen modula-
tion values a circular region around the origin of the com-
plex plane (i.e., a fully complex range) can be pseudoran-
dom encoded.

This minimal set of restrictions on ternary pseudoran-
dom encoding is of critical importance given the large
number of diffractive optics and SLM’s that produce only
a few quantized levels of modulation.

C. Preliminary Description: Distinctions between
Ternary Pseudorandom Encoding and Traditional
Computer-Generated Hologram Algorithms

To appreciate better how ternary pseudorandom encoding
differs from traditional CGH algorithms, it is worth con-
trasting it with Burckhardt’s method.!® Burckhardt’s
method uses a group of three pixels to represent arbitrary
complex values. Each pixel is variable in amplitude be-
tween zero and unity, and (through delayed sampling) the
pixels represent phases of 0°, 120°, and 240°. The addi-
tion of these three vector components with various combi-
nations of the three amplitudes permits any value in the
hexagonal region shown in Fig. 2(a) to be encoded. The
inscribed circle of unity radius is the fully complex set of
values that can be encoded by Burckhardt’s method.

i A
y—

Nﬂll

Extremal
encoding range

a,q9

a,p

Extremal encoding range

(b)

Fig. 2. Distinctions between (a) Burckhardt’s ternary encoding
method and (b) pseudorandom ternary encoding. In Burck-
hardt’s method the magnitudes of the available complex ampli-
tudes a;, ay, and a3 (their loci indicated by the three connected
arrows) can be continuously varied between 0 and 1. In pseu-
dorandom encoding, the available complex amplitudes are con-
stant, but the probabilities p, g, and r of selecting a,, ay, and ag
can be varied continuously between 0 and 1. The constraint
that p + g + r = 1 leads to pseudorandom encoding having a
different encodable/realizable range from that of Burckhardt’s
method. The fully complex range is the maximum-diameter cir-
cular region that surrounds the origin of the complex plane and
that does not exceed the extremal encoding range. The fully
complex range is drawn for the specific case that the origin is the
center of the circular region.
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Ternary pseudorandom encoding differs from Burck-
hardt’s method in two key respects: (1) Any one pixel can
be set to one of only three complex amplitudes rather
than be continuously varied through a range of values,
and (2) one pixel, rather than three pixels, is used to rep-
resent a desired complex value. Figure 2(b) illustrates
the encoding range and the fully complex range (indicated
by the inscribed circle) for unit-amplitude modulation at
the three values of phase of 0°, 120°, and 240°. The am-
plitudes that are physically available in Burckhardt’s
method are effectively represented by the probabilities p,
g, and r in ternary pseudorandom encoding. If one of the
three possible values of modulation is randomly selected
with relative frequencies of occurrence p, g, and r, then
the average value of modulation will be the vector sum of
the three available modulation values scaled by the re-
spective values of probability. As shown in Ref. 4, this
statistical average does effectively represent the pixel
modulation for purposes of designing Fourier transform
holograms.

The remainder of this paper is organized as follows.
Section 2 gives the essential mathematical background on
pseudorandom encoding and its properties needed to de-
rive encoding algorithms for quantized SLM’s. Section 3
derives the ternary pseudorandom-encoding algorithm.
Section 4 evaluates the encoding error for ternary encod-
ing. Sections 3 and 4 also present geometric interpreta-
tions of encoding and encoding error. Section 5 describes
how ternary encoding can be used to build up encoding al-
gorithms for quantized modulation characteristics and
specifically compares the encoding errors for three, four,
and five levels of quantization. Section 5 also develops a
new model of SNR in terms of measures of the signal to be
encoded and the SLM characteristics. Section 6 encodes
the same complex function by the various algorithms and
compares the resulting simulated and experimentally
produced diffraction patterns.

2. MATHEMATICAL BACKGROUND

A. General Description of Pseudorandom Encoding

All pseudorandom-encoding algorithms specify the modu-
lation of any given pixel in terms of a user-specified ran-
dom variable. The statistical properties of the random
variable are selected in such a way that the expected
value, or average, of the random modulation is identical
to the desired, but unobtainable, fully complex value.
The desired complex-valued modulation is written as a,
= (a., ¥.), and the resulting modulation by the SLM is
a = (a, ¢¥), where the ordered pairs are the polar repre-
sentations of the complex quantities. Complex quanti-
ties are indicated by bold-face type. The pseudorandom-
encoding design statement is, in general, to find a value of
the ensemble average

(a) = fap(a)da 6))

of the random variable a such that (a) = a,. The statis-
tical properties of a are determined by its probability-
density function (pdf) p(a). The pdf is specified to en-
sure that the expected value of a and the desired complex
value are identical. After an appropriate density func-
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tion is determined, the desired complex value a, is en-
coded by drawing a single value of a from a random dis-
tribution having the density function p(a). Since the
value of a is found deterministically by computer, rather
than from a random process occurring in nature, the pro-
cedure has been named pseudorandom encoding.

This pseudorandom-encoding prescription is applied to

* each pixel in sequence to encode the desired spatially

varying complex modulations a,. With i as the spatial
coordinate, the spatial samples of the desired complex
function, the pdf, and the random modulation can be writ-
ten as a,;, p;(a;), and a;. This indexing scheme can be
conveniently applied to one- or two-dimensjonal arrays,
and it is not restricted to equally spaced samples.

The far-field diffraction pattern of the encoded modula-
tion a; approximates the desired diffraction pattern [see
Fig. 1(b)). This can be seen by comparing the intensity of
the desired far-field diffraction pattern with the ensemble
average diffraction pattern that would result from the en-
coded modulation. The intensity of the desired diffrac-
tion pattern is

2

) 2

2

Ic(f) =

Saf-|#{3 ]

where #{.} is the Fourier transform operator, A;;(f) is
the Fourier transform of the transmittance of the ith
pixel located at position i in the modulator plane, and fis
the spatial coordinate across the Fourier plane. The ex-
pected intensity of the diffraction pattern from the en-
coded modulation has been derived for the condition that
the random variable a; for the ith pixel is statistically in-
dependent of a; for all j not equal to i. Under the pseu-
dorandom design condition S‘ai) = a,;, the ensemble aver-
age pattern is expressed as -

AN =L+ 2 (Al - 1A, @

where A;(f) is the Fourier transform of a;. The ex-
pected intensity consists of two terms. The first term is
the desired diffraction pattern from Eq. (2). The second
term corresponds to the average level of background (i.e.,
speckle) noise that is produced as a result of the random-
ness of the modulation. It is the error signal referred to
in Subsection 1.C. For the case of pixels that are mod-
eled as pointlike apertures, the average background noise
is of constant intensity for all frequencies f (i.e., it is
white).

B. Encoding Error Defined

Equation (3) identifies individually the noise contribution
of each pixel. Therefore insight can be gained by evalu-
ating the noise contribution in the modulation plane.
Under the assumption that the pixels are infinitesimally
wide apertures, the inverse Fourier transform of a single
pixel noise term gives the encoding error®

e = (la]®) — |a?, 4

where the subscript has been dropped to simplify presen-
tation. (If the pixels are of finite width, then an autocor-
relation of the pixel aperture function would also be in-
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cluded in the formula.* This term is dropped because it
adds no essential insight to the current discussion.)

C. Geometric Interpretation of Binary Pseudorandom
Encoding
As stated in Subsection 1.B, the pseudorandom selection
between two complex values permits any value on the line
segment connecting these two points to be realized on av-
erage. This geometric construction was used to deter-
mine the encoding range of continuous-range SLM’s8?
and to identify the pseudorandom-encoding range of
quantized SLM’s.® These results are reviewed here and
used to develop insights into pseudorandom encoding
with three (or more) quantized levels.

Binary encoding is directly developed by using the pdf
for the binary distribution in Eq. (1). The binary pdf is

p(a) = pé(a— a;) + gé(a— ay), 5)

where &(-) is the Dirac delta function, a; and a, are a pair
of complex values from the modulation characteristic, and
pand g = 1 — p are the probabilities of selecting a; and
a,. Since p is a probability, its value is between 0 and 1.
[It will be clear from usage when we are referring to the
binary probability p and the density function p(a).]
Evaluating Eq. (1) with this pdf gives an expression for
the effective complex amplitude of

(a) = pa; + (1 — p)a,. 6)

Equation (6) is recognized as the expression for a line as a
function of the variable p. For p = 1, a, is encoded; for
p = 0, a, is encoded; and for values of p between 0 and 1,
any value lying on the line segment between a; and a,
can be encoded. This geometric interpretation (see Fig.
3) can be brought out further by considering that the de-
sired complex value a, can be expressed in terms of the
two complex values a, and a, as

l l
a.=7a+ 7ay, @

where [, is the distance between a, and a,, [, is the dis-
tance between a, and a;, and ! = [; + [5. Clearly, the
lengths can be chosen so that the desired value a, can be
realized by the average (or effective) value (a). Evalua-
tion of Eq. (4) by using Egs. (5) and (7) (and some further
algebraic manipulation®) shows that the encoding error
for binary encoding,

€= Ully = pql?, (8)

% @& <«—— Available modulation value 2
Fig. 3. Geometry of pseudorandom biamplitude encoding. Any
desired value a, between the two available modulation values a,
and a, can be encoded by pseudorandom encoding. The product
of the lengths of the line segments that connect a; and a, to a, is
the encoding error € = [4/,.
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is simply the products of the distances from a, and a, to
a,. The maximum encoding error 0.25/2 occurs if a, is
the midpoint of the line segment between a; and a;.

Equations (6) and (7) suggest the following encoding
formula for binary SLM’s: For a given value of p, the de-
sired complex value a, = (a) is represented (i.e., encoded)
by a single randomly selected value

a; if0$8$p

&)

a= a, ifp<s=s?
where s is a uniformly distributed random number be-
tween 0 and 1.

D. Using Binary Encoding to Evaluate Encoding Range
The analysis and the geometric interpretation of binary
pseudorandom encoeding [Egs. (6)-(8)] provides insight
into pseudorandom encoding for various continuous and
quantized modulation characteristics.? One use of this
analysis is in determining those complex values that can
be pseudorandom encoded for a particular modulation
characteristic. As mentioned in Subsection 1.B, the
range is found by combining the ranges encoded by each
possible pair of values from the SLM characteristic.® Be-
cause the binary encoding algorithm has the fewest con-
straints, the maximum possible range of values (a convex
set) is found by this procedure. Other constraints [e.g.,
using a nonbinary pdf in Eq. (1)] are known to reduce this
range.’ Figure 2(b) shows the convex region (triangular
shaded) that is bounded by the three possible binary en-
codings a; — a,, a, — ag, and ag — a;. This is the
range of possible complex values that can be realized with
three quantized values of modulation. Also, the circular
shaded region represents the range over which fully
complex-valued functions can be encoded. Section 3 de-
rives ternary encoding and further shows that there is
only one unique solution for encoding a given complex
value.

3. TERNARY PSEUDORANDOM ENCODING

The ternary pdf for the three modulation values a;, a,,
and a; is

p(a) =pé(a— a;) + gé(a— ay) +ré(a— a3),(

where the three probabilities p, g, and r of selecting a,,
ay, and ay satisfy

p+qgq+r=1 (11)

Evaluating Eq. (1) with this pdf gives an expression for
the effective complex amplitude of

a, = {(a) = pa; + ga, + rag. 12)

There is at most one solution for the values of p, g, and r
that encodes a,. This follows from the fact that there
are three linear equations in the three unknowns. The
real and imaginary parts of Eq. (12) give two of the equa-
tions, and the third expresses that the sum of the three
probabilities is unity. These equations written in matrix
form are
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Qcr @y, Qg Q3 p
a; | =|ayu ag ag|lq], (13)
1 1 1 1 r

where subscripts r and i indicate the real and imaginary
parts of the corresponding complex values a,, a;, a5, and
ag. As long as the matrix is nonsingular, Eq. (13) has a
single solution. However, it is possible that the values
found for p, q, and r could be less than zero or greater
than unity. Since these values are probabilities, such so-
lutions cannot be pseudorandom encoded. We will show
that this situation corresponds to the value of a, being
outside the convex region formed by a;, a;, and ag [see
Fig. 2(b)).

The analysis is performed by using Eq. (11) to elimi-
nate r from Eq. (12), which yields

a, — ag = p(a; — ag) + q(ay — ag). (14)

This relationship is illustrated in Fig. 4(a). Using the ge-
ometry in Fig. 4(a) and choosing the vector a,—a; as a co-
ordinate axis, we can write Eq. (14) as

b

# a

( 0 ) {ll“i sin 013 —l23 sin 023
la g

l13 [¢3) 013 —l23 cos 023
where 13, lo3, and I3 represent the respective lengths
from a,, a,, a, to a; and where 6,3 and 83 are the angles
from a,—ag to a;—ag and a,—a;, respectively. The solu-
tion for Eq. (15) is

c3

lc3 sin 023 lc3 sin 013

P = 7L sin(0s + 050" 17 g sin(fy + 6g9)°

The geometry in Fig. 4(a) limits p and g to be positive,
since the angles 6;3 and 5 are positive and their sum
(since they are part of the same triangle) is less than
180°. Eguations (16) do admit values of p and g that ex-
ceed unity.

(@)
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We consider some special cases to appreciate better the
relationship between values of p, ¢, and r and values of
a,. First, consider cases whereg = 0. The construction
in Fig. 4(a) indicates that a, lies on the line defined by a;
and ag. Thus 6;5 = 0. Solving Eq. (15) for ¢ = 0 then
givesp = l,3/l13, andr = 1 — (I,3/l33). This result in-
dicates that ternary encoding reduces to binary encoding
[see Eq. (7] if ¢ = 0. Therefore a, is contained between
a, and a3 as long as p and r are contained between zero
and unity. Similarly, if p = 0, these equations reduce to
binary encoding between a, and az. If r = 0, then bi-
nary encoding is performed between the points a; and a,.
This situation is illustrated in Fig. 4(b). It is interesting
to note that the geometric construction forms two tri-
angles that are identical to the outer triangle
a;—a,—az;—a,, except that they are scaled in size by p and
q. Figure 4(c) generalizes this construction for cases
where r # 0. From Eq. (11) it is clear that each side of
the outer triangle is divided into lengths that are propor-
tional to p, q, and r. Now three triangles contained in-
side a;—ay—ag—a,; are apparent that are identical except
for their scaling by p, ¢ and r. This discussion shows
that as long as a, is contained on the boundary of
a;—a,—ag—a; or inside the enclosed area, it can be pseu-
dorandomly encoded. Values that are outside correspond
to probabilities that are less than zero or in excess of
unity, which cannot be realized by this statistical proce-
dure.

Once p and g are found by solving Eq. (13) or by using
Egs. (16), then ternary pseudorandom encoding of the de-
sired complex value a, = (a) is accomplished by ran-
domly selecting

a; 1f0$$$p
a=1{a if p<s<p+ag, an
ag ifp+g<ssl1

where s is a uniformly distributed random number be-
tween 0 and 1.

©

Fig. 4. Geometric relationships for ternary pseudorandom encoding. (a) The three vectors (thick lines) correspond to the three terms
in Eq. (14). Each term corresponds to a vector that has a3 as its origin. (b) Geometry for ternary encoding when the probability r
= 0. For this condition ternary encoding reduces to biamplitude encoding between a, and a;. This construction also identifies two
triangles that are identical except for scaling by p and g. The thick lines indicate the two vectors that add together to produce the
desired complex value a,. (c) Geometry for ternary encoding when the probability 7is 0 < r < 1. This construction shows that there
are three triangles that are identical except for scaling by p, ¢, and 7. The thick lines indicate the six line segment lengths that are used
in Eq. (22) to calculate the encoding error. The products of the lengths of the three pairs of collinear segments are added together to give
the encoding error.
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4. ENCODING ERROR AND GEOMETRIC
INTERPRETATION

Encoding error provides information on the amount of
noise generated by encoding. Since it can be directly cal-
culated from the desired complex value a,, it can be used
to anticipate the quality of the encoding before actually
performing the encoding. Therefore pseudorandom en-
coding has the desirable property that it automatically in-
cludes error analysis with the encoding algorithm. In
this section the encoding error is evaluated for ternary
pseudorandom encoding.

Using Egs. (10) and (12) in Eq. (4) gives the encoding
error for ternary pseudorandom encoding as

€ = pla;|? + qlay|® + rlas|® — |pa, + qap + ragf?,
(18)

where the three possible modulation values for a pixel are
a,, a5, and ag. Equation (18) can be rewritten as

e=(p - pHa? + (g — qDa? + (r — rPag®
— 2pgaqay €os ¢y — 2praiag cos P
— 2qrasagz cos a3, (19)

where q; is the magnitude of a; for i = 1,2, 3 and ¢; ; is
the angle between a; and a; for j = 2,3. (Note that in
this section the subscripts refer to one of the three pos-
sible modulation values for a pixel rather than to spatial
position of a pixel.) This result can be dramatically sim-
plified by repeated use of the law of cosines

li,j = Iai - aJ zZ = aiz + aj2 - 2a,— a; CcoS ¢ij (20)

and the use of
p—p®=pq+pr,
q-9*=pq+ar,
r—r2=pr+aqr, @1

which follows from Eq. (11). Using Eq. (20) three times
(for {i, j} = {1, 2}, {1,3}, {2, 3}) in Eq. (19) together with
Egs. (21) gives the simplified expression for encoding er-
ror of

€ = pqlis® + priyg? + qrix?. (22)

This result is quite similar to Eq. (8), the encoding error
for binary encoding. Since ternary encoding reduces to
binary encoding for r = 0, then Eq. (22) should also re-
duce to Eq. (8). Making the identification! = /5, we can
see that this is indeed the case. Likewise, wheng = 0 or
p = 0, the encoding error is identical to the binary-
encoding error between a; and a; or a, and ag, respec-
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tively. In general, for p, q, and r not equal to zero, each
of the three encoding error terms corresponds to the prod-
uct of a pair of lengths on the respective line segments
a;-ay, a;—a3, and a,—a;. To help visualize the lengths
that contribute to encoding error, Fig. 4(c) indicates the
lengths as thick lines.

5. DESIGN AND EVALUATION OF SPECIFIC
ALGORITHMS

Encoding algorithms for modulation characteristics of
any degree of quantization can be built up out of elemen-
tary ternary pseudorandom-encoding algorithms. There-
fore the analysis presented in Sections 3-5 can be special-
ized and applied to m-ary quantized meodulation
characteristics. In this section we define specific
pseudorandom-encoding algorithms for three, four, and
five levels of quantization that each provide a circular en-
coding range around the origin of the complex plane.
The encoding error for each algorithm is evaluated, and
these results are compared with the encoding errors for
continuous phase-only and biamplitude phase modulation
characteristics. We also use the encoding error together
with measures of the desired complex-valued signal to de-
fine an estimate of SNR of the resulting diffraction pat-
tern. In Section 6 these specific algorithms are demon-
strated for a specified function, and the SNR’s of the
resulting diffraction patterns are compared with our esti-
mated SNR.

The specific pseudorandom-encoding algorithms evalu-
ated in the remainder of this paper are defined with the
help of Table 1. The ternary algorithm is defined to use
three modulation values that are equally spaced by 27/3
rad around the unit circle. The m-ary 1 algorithm uses
four modulation values that are equally spaced by /2
around the unit circle, and the m-ary 2 algorithm uses the
same four modulation values as those for m-ary 1, with
the addition of the value of zero. The m-ary 1 algorithm
is built up out of two ternary encoding algorithms. The
modulation values of {1, j,—1} are used for desired com-
plex values that lie in the upper half of the complex plane,
and {1,—j,—1} is used for encoding complex values that
lie in the lower half-plane. The m-ary 2 encoding algo-
rithm is composed of four ternary encoding algorithms
(listed in the third column of Table 1). Each of the four
ternary algorithms corresponds to encoding desired val-
ues in one quadrant of the complex plane.

To compare pseudorandom encoding for discrete modu-
lation characteristics with pseudorandom encoding for
continuous characteristics, we also consider encoding al-
gorithms for phase-only* and biamplitude phase SLM’s.5
The biamplitude encoding algorithm is identical to that

Table 1. Defining Parameters and Metrics for Various Pseudorandom-Encoding Algorithms

SLM Type SLM Values Ternary Groups v €
Ternary 1, exp(*j27/3) {1, exp(%j27/3)} 1/2 1-ga,
m-a.ryl il: tj {l,j,_l}, {1’ _j’ _1} \/m 1- a.
m-ary2 0, t]-: ij {Os ils J}v {01 1’ t]} \/i/—2 ptgqg-— ac2
Phase-only exp( ji) — 1 1-a.?
Biamplitude phase 0, exp( j¥) — 1 a, — a2
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reported in Ref. 5. It can be viewed as binary pseudoran-
dom encoding (as described in Section 2) by using the two
modulation values of 0 and exp(jy,), where i, is the
phase of the desired complex value a, and the binary se-
lection between the two modulation values is controlled
by the probability p = ¢,. The encoding algorithm for
phase-only SLM’s used in this study is simpler than the
algorithm originally reported in Ref. 4. The new algo-
rithm is based on binary encoding between the two values
+exp(jy,). In this case the appropriate probability
needed to encode the amplitude a, is p = (1 + a,)/2.

We choose to use this phase-only encoding algorithm
over the algorithm in Ref. 4 because it is somewhat sim-
pler to program. However, very similar results are an-
ticipated by either algorithm, since they both produce
identical levels of encoding error. This can be appreci-
ated by evaluating the encoding error with the use of Eq.
(4). This equation reduces to € = 1 — a2 for any phase-
only modulation.®® This is true for both continuous and
discrete phase-only modulation characteristics [as can
also be shown by evaluating Eq. (18)]. Therefore the
phase-only, ternary, and m-ary 1 algorithms all produce
identical encoding errors when the same amplitude is en-
coded. The encoding error for biamplitude phase modu-
lation, € = a, — a.2, is given in Refs. 5 and 6. This re-
sult also follows from Eq. (8)if/ = 1 and @, = p, which is
the case for biamplitude encoding. For the m-ary 2 algo-
rithm, analysis of Eq. (4) or (18) by using any one of the
ternary groups (given in the third column of Table 1)
gives the encoding error € = p + ¢ — a,2. The encoding
error for each of the five algorithms is summarized in
Table 1.

Even though the three algorithms for phase-only SLM’s
produce identical encoding errors when the same value is
encoded, this does not mean that their performance is
identical. The reason is that the circular encoding range
[see Section 2 and Fig. 2(b)] is less for our discrete modu-
lation characteristics than it is for our continuous charac-
teristics. The scaling of the desired complex-valued func-
tion to fit within the maximum circular radius y of each
modulation characteristic can cause significant differ-
ences in the amount of encoding error for the various al-
gorithms. For the case of a SLM that produces M uni-
formly spaced phase-only modulation values around the
unit circle, the maximum circular radius can be expressed
as

vy = cos(w/M). (23)

This result is determined by considering that the fully
complex encoding region intersects the chord connecting
nearest-neighbor modulation values at the half-angle
7/M between them. The values of y for our specific
encoding algorithms are listed in the fourth column of
Table 1.

For many pseudorandom algorithms, scaling the com-
plex values to be smaller than the maximum possible ra-
dius vy reduces diffraction efficiency and increases SNR.6
It is also possible to combine pseudorandom encoding
with other algorithms, which permits the complex values
to be scaled to be larger than the maximum circular
radius.’ This can produce greater diffraction efficiencies
and higher SNR’s. Considering these additional two pos-
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sibilities would needlessly complicate this study. In this
paper the fully complex values are scaled so that the
maximum amplitude for a given encoding algorithm is its
maximum circular radius y.

With this definition of the maximum circular encoding
range, it is now possible to make a comparative analysis
of the performance of each algorithm. Since the desired
fully complex function a,(x) is normalized so that its
maximum amplitude is , it is appropriate to compare the
amplitudes a.;/y; and a.y/ys, where the subscripts 1
and 2 indicate the values of amplitude and maximum am-
plitude for two different algorithms. Since encoding er-
ror is proportional to intensity rather than amplitude, it
is appropriate to compare the normalized encoding errors
€1/y:2 and €5/y,2. Therefore, rather than describing the
absolute encoding error, this normalization presents the
error-to-signal ratio, or relative error, for the same value
encoded by two different algorithms. Relative error is
more informative of the fidelity of the diffraction patterns
resulting from pseudorandom encoding than is absolute
encoding error.

The encoding errors for the Table 1 algorithms are pre-
sented in this way in Fig. 5. Phase-only encoding always
produces larger encoding errors than biamplitude phase
encoding, as reported in Ref. 5. The m-ary 2 algorithm
produces a range of relative errors that are contained be-
tween the two m-ary 2 curves in Fig. 5. The lower curve
corresponds to the case where ¢ = 0, and the upper curve
corresponds to the case where p = g. Figure 5 shows
that the m-ary 2 algorithm always produces more relative
error than does biamplitude phase encoding but fre-
quently produces less relative error than does phase-only
encoding. If the desired complex-valued function a,(x)
has many more amplitudes that are less than 1/2, then
the total relative error produced by m-ary 2 encoding can
be substantially less than that for phase-only encoding.
Alternatively, if most of the desired complex values are
well above 1/2, then m-ary 2 encoding produces a total
relative error that is much greater than that for phase-
only encoding.

1 -
phase-only
m-ary 2
o
>
K
>
bi-amp phase
0 T T A L}
0 1
aly

Fig. 5. Relative encoding errors for various pseudorandom-
encoding algorithms. The desired magnitude a, is normalized
by v, the maximum radius for the fully complex encoding range,
and the relative encoding error is €, = €/9?. The striped re-
gion gives all possible encoding errors for the m-ary 2 algorithm.
The phase-only curve also represents the relative encoding error
for pseudorandom encoding with M phase-only values that are
uniformly spaced in angle. In this case the plotted phase-only
curve is offset by tan*(7/M) [see Eq. (24)].
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The relative error curves for ternary and m-ary 1 en-
coding are identical to the relative error curve for phase-
only encoding, except that they are offset by amounts that
depend on the degree of quantization. This can be seen
by considering that for quantized phase-only modulation
characteristics for which there are M evenly spaced
modulation values on the unit circle, the relative error
can be written with the help of Eq. (23) as

€ = ey/yy® = 1 + tan®(w/M) — (a./yu)?. (24)

For the maximum amplitude of a, = vy, Eq. (24) gives
the minimum relative error €, = tan*(#/M), and for the
minimum amplitude of a, = 0, the relative error is €,
= 1 + tan’*(w/M). Between these limiting points the
curve has the identical quadratic dependence as that of
the relative error curve for the continuous phase-only
modulation characteristic. Therefore the quantized
characteristics produce additional relative error by the
amount tan®(w/M). For the ternary encoding this offset
is 8, or in other words, the relative error for ternary en-
coding is always larger by a value of 3 than that for
phase-only encoding. For m-ary 1 encoding the offset is
1. With increasingly fine quantization the relative error
curve approaches the phase-only curve. For instance,
the offset would be 0.17 for eight levels and 0.04 for 16
levels of quantization.

Despite the significant amount of relative error pro-
duced by ternary pseudorandom encoding, it is possible to
use this noisiest of pseudorandom algorithms to encode
many desired complex functions with good fidelity. The
key factor is that the spatial extent (i.e., the bandwidth B)
of the desired diffraction pattern is small enough that the
signal is sufficiently greater than the background noise
that is due to the sum of the encoding errors from each
pixel.

A simple analysis is presented to make this relation-
ship more apparent. Consider that a particular desired
function is pseudorandom encoded for an N-pixel SLM.
The average encoding error per pixel is €, , and the aver-
age intensity transmittance that is encoded is a,,2. The
total energy in the encoding error is then Ne¢,, and the
total energy in the encoded signal is Na.,2. The encod-
ing error in the diffraction plane transforms into a white
spectrum over a bandwidth of N, whereas the desired sig-
nal has a designed bandwidth of B. Therefore the de-
sired diffraction pattern will have a directionality gain of
N/B over the spectrum of the encoding error. The SNR
can then be written for this approximate analysis as

N a2

SNR = B e
To appreciate this analysis better, consider the follow-
ing numerical example. For a 128 X 128-pixel phase-
only SLM (N = 16,384), an average encoding error &,
= 0.9, a root-mean-square amplitude transmittance
0.,2=1- € =032 (from Table 1), and a desired
signal-to-noise ratio SNR = 100, Eq. (25) gives the result
that the bandwidth of the desired signal needs to be B
=< 18.2. This analysis shows that even for pseudoran-
dom algorithms that produce the greatest encoding er-
rors, there are many diffraction patterns that can be suc-
cessfully encoded as long as the SNR is acceptably large

(25)
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and the signal bandwidth is correspondingly low. The
trends predicted by Eq. (25) are evident in the computer
simulations and the experimental demonstrations that
are presented in Section 6.

Although fidelity of diffraction patterns is the focus of
this investigation, diffraction efficiency is probably the
most widely discussed metric. For this reason a few ba-
sic relationships are reviewed that relate diffraction effi-
ciency to SNR. In pseudorandom encoding, the diffrac-
tion efficiency has been shown to be identical to the
average intensity of the fully complex function that is to
be encoded.®? This is written as

1 N
= — 2= a’ 26
7 N t§=;l Qei Ceq (26)

Since, for a particular encoding method, the a,; are scaled
so that the maximum amplitude equals the circular en-
coding radius 7, it is clear from Eq. (26) that the diffrac-
tion efficiency is proportional to ¥2.® Consequently, the
efficiencies of the five algorithms in Table 1 vary by a fac-
tor of 4.

For arbitrary modulation characteristics the average
intensity transmittance in Eq. (26) can be replaced by the
diffraction efficiency 7, and for the specific case of phase-
only modulation Eq. (26) reduces to

7
1-7

N
SNR = B 27
However, for the two modulation characteristics in Table
1 that also have a zero amplitude the denominator term
€, is less than 1 — 7, which increases the SNR over that
possible for the corresponding discrete or continuous
phase-only characteristic.

6. DEMONSTRATIONS OF TERNARY
ENCODING

A. Specification of the Desired Function To Be

Encoded

In this section the same desired function a,; is encoded by
various algorithms, and the resulting simulated and ( for
some cases) experimentally measured diffraction patterns
are presented. The desired function is a 128 X 128 array
of complex values that has a Fourier transform that pro-
duces a 7 X 7 array of uniform-intensity diffraction-
limited spots. To better compare pseudorandom encod-
ing with known art, we relate our results to previously
published designs. Krackhardt et al. have reported the
highest possible diffraction efficiency designs for continu-
ous phase-only SLM’s.!! Our complex values are derived
from their design for a 1 X 7 spot array. Their Table III
specifies seven phases 6, associated with seven equally
spaced spots. These phases are used to specify a desired
fully complex function of the form

8
a,(x,y) = >, exp(j6y)exp(j2mkz)

8
x; exp(jO)exp(j2nly)  (28)
=2
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that is rectangularly separable. This periodic function is
sampled to produce a 32 X 32-unit cell of complex values
and a 4 X 4 array of cells that form the 128 X 128 de-
sired complex values.

B. Definition of the Encoding Algorithms Used

These values are then encoded by each of the five algo-

rithms in Table 1. (Part of the encoding includes scaling

the desired complex values so that the largest amplitude

of the complex values is equal to the appropriate value of

y given in Table 1.) The resulting diffraction patterns
. are compared and evaluated.

Equation (28) can also be interpreted as a desired fully
complex function for the study of Krackhardt et al. The
phases found through their global optimization of the dif-
fraction pattern specify a desired function that is then en-
coded onto continuous phase-only SLM’s by transforming
the desired fully complex function into the phase-only
function or kinoform!?

a(x, y) = exp{j argla.(x, y)]}. (29)

This encoding is performed not only so that the desired
function can be implemented by a phase-only modulator
but also to maximize diffraction efficiency.!® The encod-
ing indicated in Eq. (29) is also applied to the 128 X 128
desired complex values, and the resulting diffraction pat-
tern is compared with those of the five pseudorandom al-
gorithms. We will refer to this algorithm as nonrandom
phase-only encoding to help distinguish it from pseudo-
random phase-only encoding.

Since the algorithms in which we are most interested
are for quantized SLM’s, we also quantize the phase to
three and four values of phase (uniformly spaced around
the unit circle) and evaluate the diffraction patterns for
these modified encodings. We refer to these algorithms
as nonrandom ternary and nonrandom m-ary 1, respec-
tively. It should be noted in Tables I and II of Ref. 11
that different values of the spot phases 6, would lead to
maximum diffraction efficiency. However, this would re-
quire a new optimization to find the phases for each
modulator characteristic. Instead, in keeping with the
spirit of encoding the same complex function, we have
chosen to compare quantized pseudorandom encoding
with quantized versions of the maximume-efficiency, rect-
angularly separable design.

It is also possible to specify a nonrandom version of the
pseudorandom m-ary 2 algorithm. In this case a zero-
value modulation is selected if the desired complex value
is closer to zero than to the four other phase-only modu-
lation values. To compare the pseudorandom and non-
random m-ary 2 algorithms fairly, the desired complex
values a,; are similarly scaled, so that the maximum am-
plitude encoded is y = V1/2. However, Juday has shown
that the quality of an encoding depends on the value of
¥5!*  For this reason we also perform an iterative search
to find the value of y that optimizes the performance mea-
sures that are of most interest to us. The optimum value
found in our simulations is y = 1.3, which optimizes
signal-to-peak-noise ratio (SPR) and uniformity. Sub-
section 6.C defines these two and the other metrics of
interest.
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C. Simulation Procedures and Definition of the
Performance Metrics
Two metrics, diffraction efficiency 7 and signal-to-noise
ratio SNR, are directly calculated from the desired com-
plex values a, for each of the five pseudorandom-
encoding algorithms. After a,; is scaled by the appropri-
ate value y in Table 1, 7 is calculated by using Eq. (26)
and SNR is calculated by using Eq. (25). In these calcu-
lations we use N = 128 for the number of SLM pixels,
and, considering a diffraction-limited spot to have a
space-bandwidth product of 1, we use B = 72 for the
space-bandwidth product of the desired signal. These
metrics that are based on theory are listed in parentheses
in Table 2 beside the values of SNR and 7, which are cal-
culated directly from the simulated diffraction patterns.
The far-field diffracted intensity patterns are simu-
lated by fast-Fourier-transforming the encoded values a;
and then squaring the magnitude for each of the pseudo-
random and nonrandom encodings. For all metrics ex-
cept diffraction efficiency, the 128 X 128 array is placed
in a 512 X 512 array of zeros that is fast Fourier trans-
formed. The zero padding is used to resolve the features
of the diffraction pattern more finely and to produce more
realistic gray-scale images. For diffraction efficiency the
128 X 128 array is fast Fourier transformed directly.
For phase-only modulation (for either pseudorandom or
nonrandom algorithms), the efficiency is simply the sum
of the intensities of the 49 spots divided by the sum of all
intensities in the 128 X 128 diffraction pattern. For the
other modulation characteristics that contain a zero
value, the energy absorption in the modulator plane also
needs to be accounted for.> Therefore the ratio of desired
energy to total energy in the diffraction pattern is multi-
plied by the ratio of unit-amplitude pixels (i.e., “on” pix-
els) to the total number of pixels (i.e., number of on plus
off pixels). The SNR is the ratio of the average intensity
of the peak values of each of the 49 spots to the average
intensity of the 512 X 512 pattern, excluding the square

Table 2. Performance Measures of the
Pseudorandomly Encoded Desired Function

Pseudorandom 7 (%)* SNR® SPR  p-unif (%)
Biamplitude phase 44 (44) 685 (710) 38 4
m-ary 2 22 (22) 197 (203) 15 10
Phase-only 43 (44) 254 (262) 17 10
m-ary 1 22 (22) 93 (94) 8 11
Ternary 11 A1 40 (41) 3 20

%Numbers in parentheses are calculated from Eq. (26).
bNumbers in parentheses are calculated from Eq. (25).

Table 3. Performance Measures of the
Nonrandomly Encoded Desired Function

Nonrandom 7 (%) SNR SPR n-unif (%)
m-ary 2 (y = J1/2) 7 175 1 60
m-ary 2 (y = 1.8) 68 961 5 11
Phase-only 92 1076 77 18
m-ary 1 75 1189 5 18
Ternary 63 376 1 18
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Fig. 6. [(a)-(f)] Simulated and [(g)—(i)] experimental gray-scale images of the diffraction pattern intensity resulting from various en-
coding algorithms. All encodings are pseudorandom except (a), which is nonrandom phase-only. The simulated pseudorandom encod-
ings are (b) biamplitude phase, (c) m-ary 2, (d) phase-only, (¢) m-ary 1, and (f) ternary. The experimental pseudorandom encodings are
(g) phase-only, (h) m-ary 1, and (i) ternary.
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Fig. 7. Simulated cross sections of the diffraction pattern intensity resulting from various encoding algorithms: (a) pseudorandom
encodings, (b) nonrandom encodings. Each cross section is along a diagonal that contains the (7,7) order (leftmost spot), the (1,1) order
(rightmost spot), and the optical axis (the rightmost side of the curve). For all the pseudorandom curves in (a) and the nonrandom
phase-only curve in (b), the cross sections are the intensity values from the diagonal (from upper left to lower right) of the corresponding
gray-scale image in Fig. 6. The four other nonrandom encodings in (b) are plotted over an identical range.

region that contains the 7 X 7 spot array. The SPR is in Tables 2 and 8 as n-unif) is well characterized by the
the ratio of the average peak intensity of the spots to the standard deviation of the peak intensities of the 49 spots
maximum noise peak outside the square region contain- divided by the average spot intensity. We present the
ing the spots. Nonuniformity of the peaks (abbreviated nonuniformity metric this way instead of as the maxi-
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mum peak-to-peak fluctuation of the spots because this
metric is less susceptible to the random variations that
occur for each new set of random numbers used in the en-
coding algorithm. We did observe that the peak-to-peak
fluctuations are 1.8-2.5 times greater than the values of
nonuniformity reported in Table 2 and below in Table 3.

D. Simulation Results

Figures 6(a)-6(f) show the same portion of the 512
X 512 diffraction patterns for nonrandom phase-only en-
coding [Fig. 6(a)] and for each of the five pseudorandom
encodings [Figs. 6(b)-6(f)l. Figure 7(a) shows a cross
section of intensity pattern [along a diagonal slice con-
taining the optical axis and the (1, 1) and (7, 7) spots] for
the five pseudorandom-encoded patterns. Figure 7(b)
shows the corresponding cross sections for the nonrandom
encodings. The diagonal cross sections tend to accentu-
ate intensity fluctuations between the spots and to ex-
clude most of the sidelobes between the spots that are due
to the sinc-squared nature of the diffraction pattern of
each spot. The three patterns of Figs. 6(d)-6(f) show in-
creasing levels of background speckle noise and nonuni-
formity of the spots. The pseudorandom biamplitude
phase encoding [Fig. 6(b)] appears to be free of speckle
noise, and the quantized biamplitude encoding [i.e., m-ary
2, Fig. 6(c)] appears to have a noise level that is indistin-
guishable from that of the phase-only encoding [Fig. 6(d)].
Although most of the cross sections in Fig. 7(a) are rea-
sonably uniform, it is clear that the ternary encoding is
the least uniform of the five pseudorandom encodings.
From the metrics in Table 2, it is possible to make the fol-
lowing observations about pseudorandom encoding:

1. Though not unexpected, Table 2 demonstrates that
as the quantization becomes coarser, the performance de-
creases. This observation also applies to comparisons be-
tween phase-only and biamplitude phase encoding.

2. The small observed differences between the gray-
scale images for the m-ary 2 [Fig. 6(c)] and phase-only
[Fig. 6(d)] encodings are borne out by the relative differ-
ences between their metrics in Table 2. The only signifi-
cant difference is in diffraction efficiency, which is not re-
flected in the gray-scale images.

3. The theoretical diffraction efficiency of Eq. (26) and
the SNR of Eq. (25) are in close agreement with the simu-
lated results.

4. The values of SNR are 12-18 times larger than
those of SPR. The much lower SPR is probably due in
large part to the background speckle noise being exponen-
tially distributed in intensity.!® The exponential pdf de-
creases to zero very slowly with increasing values of in-
tensity. There are also on the order of N = 16,384 (the
number of pixels and also the space—bandwidth product
of the speckle noise pattern) independent noise samples
in the diffraction pattern. In 16,384 independent Ber-
noulli trials, there is a probability of approximately 50%
that the maximum value is 10X greater than the average
value of an exponential distribution, and there is a 10%
probability that the maximum value is 12X greater than
the average. This leads to the possibility of the
maximum-valued noise peak used to calculate SPR being
substantially larger than the average value of noise inten-
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sity used to calculate SNR. However, since our maxi-
mum noise peaks always tend to be somewhat larger than
the 50th percentile, there appear to be other contributions
to the background that we have not been able to account
for.

The model is presented mainly to provide insight into
the noise properties of pseudorandom encoding. These
properties are noticeably different from those for nonran-
dom encoding, as we show presently.

The nonrandom-encoding algorithms can all be viewed
as a point-by-point nonlinear transformation of the de-
sired complex values. This type of nonlinearity usually
produces mixing products that appear as unwanted sum
and difference frequencies in the diffraction pattern and
as interference in the signal strengths of the desired
frequencies.? The mixing products are not very evident
in the gray-scale image for nonrandom phase-only encod-
ing [Fig. 6(a)l. The interference, which perturbs the uni-
formity of the spot array, is evident in the intensity
curves for phase-only as well as for m-ary 1 and ternary
encodings in Fig. 7(b). The m-ary 2 (y = 1.3) encoding is
the most uniform of the nonrandom encodings shown.
Some mixing products at frequencies other than for the
desired 7 X 7 spot positions are also apparent in all the
intensity curves except for the nonrandom phase-only en-
coding. However, the mixing products are significantly
larger away from the desired spot array, as shown in Fig.
8(a) for the nonrandom ternary encoding. The spot array
is designed to lie to the upper left of the optical axis,
which gives rise to the strong unwanted harmonics in the
lower right corner of the gray-scale image. All the other
nonrandom encodings are similar in that the noise is pri-
marily distributed in this same spatial pattern (though
with differing intensity levels).

Comparing the simulated nonrandom encodings with
pseudorandom encodings, we observe that the pseudoran-
dom encodings all have a speckle/noise pattern of the
same average intensity and visual texture over the entire
simulated diffraction pattern, as is shown in the close-up
views of Figs. 6(b)-6(f). The intensity cross sections for
the nonrandom encodings in Fig. 7(b) generally appear
less uniform than those for the corresponding pseudoran-
dom curves in Fig. 7(a). The background noise is much
more evident on the pseudorandom ternary encoding [Fig.
7(a)l than it is on the nonrandom ternary encoding [Fig.
7(b)}; however, the peak noise of the nonrandom encoding
[shown over a wider spatial extent in the cross section in
Fig. 8(a)] is significantly larger than the background noise
for pseudorandom encoding.

Table 3 provides more detailed information for compar-
ing the individual nonrandom-encoding algorithms with
each other and with the results in Table 2 for pseudoran-
dom encoding. The nonrandom diffraction efficiencies
are generally much higher than those for pseudorandom
encoding. However, the m-ary 2 (y = \/1/2) encoding has
an extremely low diffraction efficiency. This is a direct
result of the small value of the maximum complex radius
v, which leads to most of the desired complex values being
closer to zero than to a unity magnitude point. This led
to our use of the m-ary 2 (y = 1.3) encoding, which pro-
duces much more uniform spot arrays than does the non-
random phase-only encoding.
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Fig. 8. Delineation of nonlinear effects on encoding: (a) simulated and (b) experimental diffraction pattern intensity for nonrandom
ternary encoding, (c) experimental diffraction pattern for pseudorandom ternary encoding. These patterns show a larger view of the
diffraction pattern than those in Figs. 6 and 7. Each intensity cross section is along the diagonal of the corresponding gray-scale image.
In (a) and (b) the nonrandom ternary encoding produces mixing products, as evident in the lower left corner of each gray-scale image.
Although speckle noise is evident in this same region for pseudorandom ternary encoding [(c)], it is much lower in intensity than the
mixing products for (b). The saturated spot (centered on the optical axis) in (b) and (c) is primarily a result of the SLM cover glass not
being antireflection coated. The most severe effect of the SLM’s limited resolution is the appearance, to the lower left of the optical axis,

of a-duplicate 7 X 7 spot array in (b) and (c).

For completeness Table 3 reports SNR. This number
has little practical use, since much of the noise energy ap-
pears in a relatively few noise spikes. This leads to the
ratio of SNR to SPR being greater than 100 for four of the
five nonrandom algorithms, with the one exception being
the maximume-efficiency, phase-only encoding.

The nonrandom phase-only encoding by far produced
the highest diffraction efficiency and SPR of any encoding
algorithm. In fact, so much energy is in the desired spots
that there is little energy left to contribute to noise.
However, the spot array is less uniform than for the pseu-
dorandom phase-only encoding. It should be noted that
Krackhardt et al. reported that by reoptimizing the de-
sign, it is possible to lower the diffraction efficiency some-
what, which results in a more uniform array of spots.1!
Nonetheless, pseudorandom phase-only encoding pro-
duces reasonably uniform spot arrays and large values of
SPR, and it does this without the added computational ef-
fort of reoptimizing. This becomes clearer when it is
seen that the SPR of the quantized modulation character-
istics is much lower for nonrandom encoding (Table 3)
than it is for pseudorandom encoding (Table 2). This can
be interpreted that pseudorandom encoding is less se-
verely affected (i.e., it is more robust) than nonrandom
encoding by quantization effects. The results in Krack-
hardt et al. for binary modulation suggest that reoptimi-
zation would be needed for each new type of quantization
to minimize these effects. Even with its lower diffraction
efficiency, the pseudorandom encoding appears to produce
a more faithful reconstruction, with less computational
effort, than do the nonrandom encodings. Furthermore,

based on the studies in Ref. 5 on biamplitude encoding, it
appears likely that there is a way to blend random and
nonrandom algorithms for discrete-value meodulation
such that by adjustment of the value of y (similar to our
optimization of nonrandom m-ary 2 encoding) the unifor-
mity and the SPR are improved over those possible with
either random or nonrandom encoding individually.
This iteration increases computation, but since only one
parameter is adjusted, the computation time should be
significantly less than that for the global optimization ap-
proaches used in, e.g., Refs. 3 and 11.

E. Procedures Used for the Experiments

We also have attempted to modulate a Hughes birefrin-
gent liquid-crystal light valve (set up in a phase-only
mode) with the encoded phase values. Cohn et al. previ-
ously reported experiments on phase-only encoding for
this light valve.’® The current setup differs from the pre-
vious setup in that (1) a 488-nm laser is now used in place
of a 633-nm laser, (2) the pixel array is now a 128
X 128 array instead of a 100 X 100 array [used for Fig.
3(c) in Ref. 15], and (3) the video signal that drives the
write light monitor (an Electrohome EDP58XL mono-
chrome monitor with a Hughes high-brightness red tube)
is now derived from a Coreco video display card (S3 chip
set) set to a resolution of 800 X 600 noninterlaced pixels.
Previously, a National Television System Committee
(NTSC) signal was the video source. As in Ref. 15, a
SLM pixel corresponds to three video lines or 3 X 3 pixels
from the video display card. We have characterized the
transfer function from gray-scale values in digital
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memory to the phase modulation of the light valve. With
the light valve drive voltage set to 27 V p.-p. (2 kHz) and
with proper adjustment of the brightness and the contrast
of the monitor, we have realized a nearly linear transfer
function in which a gray-scale value of 80 corresponds to
zero phase shift and a gray-scale value of 255 corresponds
to a phase shift of 2#. The monitor magnification is set
to minimum in the horizontal direction. The monitor is
reimaged with a 1.9X reduction onto the write side of the
light valve. The resulting image is 21 mm X 21 mm,
which we have determined to be the maximum input ap-
erture size that allows us to produce diffraction-limited
optical Fourier transforms. This area is illuminated on
the read side of the light valve with the light polarized
along the extraordinary axis of the liquid crystal. The
beam converges to a focal point approximately 2 m from
the light valve. A 2033 X 2044-pixel cooled CCD camera
placed at the focal point records the resulting diffraction
patterns.

F. Experimental Results

Figures 6(g), 6(h), and 6(i) show the diffraction patterns
for pseudorandom phase-only, m-ary 1, and ternary en-
coding, respectively. The images differ from the simu-
lated patterns in Figs. 6(d), 6(e), and 6(f), respectively, in
that there is a bright spot centered on the optical axis
(lower right corner of each image) and that the intensity
rolls off/decreases with distance from the optical axis.
The bright spot is due primarily to the cover glass of the
light valve not being antireflection coated. The roll-off is
due to the limited spatial frequency response of the phase
of the SLM. The filtering of the phase also produces non-
linear mixing products that contribute energy to the on-
axis spot and to an unwanted mirror image of the desired
7 X 7 spot to the lower left of the optical axis in Figs. 8(b)
and 8(c). By comparison of Figs. 8(a)-8(c), it can be seen
that nonrandom encoding itself produces strong nonlinear
mixing products at a few frequencies [at the lower right of
Figs. 8(a) and 8(b)]. Instead of producing mixing orders,
pseudorandom encoding [Fig. 8(c)] produces an average
low level of speckle noise over the entire spatial extent of
the diffraction pattern. For either nonrandom- or
pseudorandom-encoding experiments, additional nonlin-
ear terms (the mirror images) are present in Figs. 8(b)
and 8(c) as a result of the limited phase resolution of the
SLM. This distortion, which is due to the limitations of
the SLM rather than the encoding method, makes it dif-
ficult to make meaningful comparisons between simula-
tion and experiment. Nonetheless, qualitative agree-
ment between Figs. 6(c) and 6(g), 6(d) and 6(h), and 6(e)
and 6(@) is seen in that the noise level increases as the
quantization becomes coarser.

Potentially much closer agreement between theory and
experiment is anticipated by using electrically addressed
SLM’s. Most of the current devices have individually de-
fined electrodes for each pixel, which would minimize
resolution loss that is due to electrostatic fringing fields
across the liquid-crystal layer. These SLM’s are avail-
able only as research-grade or custom devices. In our
case this has led to significant delays in obtaining a fully
functional device. We have previously observed very
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close agreement between simulation and theory for pseu-
dorandom phase-only encoded designs that were imple-
mented as diffractive optical elements.'”!® These results
assure us that given an adequately ideal phase-only (or
coupled amplitude—phase) SLM, it would be possible to
encode fully complex functions, even if the SLM is capable
of producing only a few discrete levels of modulation.

7. SUMMARY

In this paper we have derived a statistically based algo-
rithm that with as few as three discrete modulator values
encodes a desired complex value to a single pixel in an av-
erage sense. This pseudorandom ternary algorithm can
be applied directly to SLM’s that produce only three val-
ues. For SLM’s that produce several discrete values,
multiple groups of three values can be used to subdivide
the complex plane into smaller areas that are ternary en-
coded, which consequently produces smaller amounts of
encoding error. The effect of quantization on pseudoran-
dom encoding is well characterized in a simple model of
SNR that depends on only four parameters: two that de-
pend on the signal to be encoded (signal bandwidth and
signal diffraction efficiency), one that depends on the
modulator characteristic (number of SLM pixels), and one
(average encoding error per pixel) that depends on both
the signal to be encoded and the modulator characteristic
curve. We demonstrated in our simulations that this
metric accurately describes the SNR of spot array genera-
tors.

To better appreciate the performance of pseudorandom-
encoding algorithms, we have compared these algorithms
with currently used algorithms in which a desired fully
complex function is mapped into modulation values in a
systematic and nonrandom way. This function (selected
by a global optimization procedure), when mapped to a
continuous, phase-only modulation characteristic, pro-
duces a diffraction pattern that has the highest diffrac-
tion efficiency and the highest SPR of all encoding algo-
rithms studied herein. However, it is less uniform than
four of the five pseudorandom algorithms. Furthermore,
the SPR of the nonrandom algorithms becomes much
worse than that of the pseudorandom algorithms that use
similarly quantized modulation characteristics.

Even though the pseudorandom algorithms are less dif-
fraction efficient than nonrandom algorithms, these re-
sults nonetheless indicate that pseudorandom algorithms
offer significant advantages in terms of fidelity of the dif-
fraction pattern. The advantages of complex-valued en-
coding techniques, despite their lower diffraction éfficien-
cies, are further amplified by Kettunen et al.® These
advantages, coupled with the low computational overhead
of the encoding algorithm and its ability to place a signal
anywhere in the available space-bandwidth product of
the SLM, make it especially useful for today’s low-pixel-
count SLM’s. We have also observed that the perfor-
mance advantages of pseudorandom encoding over non-
random encoding are even more pronounced when it is
not possible to maximize the diffraction efficiency of the
desired fully complex function, such as in many real-time
and time-critical applications.
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ERRATA

Ternary pseudorandom encoding of Fourier
transform holograms: errata

Robert W. Cohn and Markus Duelli
The ElectroOptics Research Institute, University of Louisville, Louisville, Kentucky 40292

[S0740-3232(99)01405-2]

OCIS codes: 230.6120, 090.1760, 030.6600, 070.0070.

Owing to the printing process the gray-level values below
60 (out of 256 levels) appear as black in Figs. 6 and 8 of
Ref. 1. This makes it difficult in Fig. 8 to delineate be-
tween nonlinear effects of encoding and of the SLM. Fig-
ure 8 is reproduced here on a glossy paper and with the
gray scale scaled by a factor of 2 (and also clipped for gray
levels above 255). The inherent nonlinearity in nonran-
dom encoding produces large undesired diffraction orders
that appear in the lower right corner of Fig. 8(a). Apply-
ing this encoding to a low-resolution phase-only light
valve produces additional diffraction orders, including a
bright spot on the optical axis and a set of orders at mir-
ror locations to the desired spot array, as shown in Fig.
8(b). Applying ternary pseudorandom encoding to the
same modulator produces the pattern in Fig. 8(c). This
figure does not contain the undesired orders that are as-

sociated with the nonrandom algorithm of Fig. 8(a) but in-
stead has a broadly spread, low-level background of
speckle. Figure 6(i) in Ref. 1 is a closeup of Fig. 8(c). The
speckle level is higher in Fig. 6(i) for three levels of quan-
tization than in Fig. 6(h) for four levels of quantization.
Figure 6(g) for five levels of quantization has an even
lower level of speckle background. The corresponding
Figs. 6(d)—6(i) for the simulated encodings show the same
trends in background speckle levels. Readers who wish to
view a version of Fig. 6 that has higher dynamic range
can download the electronic version of the paper from
JOSA A online or contact the authors for reprints.

The performance measures for phase-only nonrandom
encoding were incorrectly reported in Table 3. The
signal-to-noise ratio (SNR) was too small and the signal-
to-peak-noise ratio (SPR) was too large. The correct

() (b) © ‘

Fig. 8. Delineation of nonlinear effects on encoding: (a) simulated and (b) experimental diffraction pattern intensity for nonrandom
ternary encoding, (¢) experimental diffraction pattern for pseudorandom ternary encoding. These patterns show a larger view of the
diffraction pattern than those in Figs. 6 and 7. Each intensity cross section is along the diagonal of the corresponding gray-scale image.
In (a) and (b) the nonrandom ternary encoding produces mixing products, as evident in the lower left corner of each gray-scale image.
Although speckle noise is evident in this same region for pseudorandom ternary encoding [(c)], it is much lower in intensity than the
mixing products for (b). The saturated spot (centered on the optical axis) in (b) and (c) is primarily a result of the SLM cover glass not
being antireflection coated. The most severe effect of the SLM’s limited resolution is the appearance, to the lower left of the optical axis,
of a duplicate 7 X 7 spot array in (b) and (c).

0740-3232/99/051089-02$15.00  © 1999 Optical Society of America
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numbers are SNR = 5400 and SPR = 17. This indicates
that the phase-only pseudorandom encoding also pro-
duces a more faithful reconstruction than the nonrandom
encoding since each encoding has identical SPR but the
nonuniformity of the spot array for pseudorandom encod-
ing is nearly half of that for nonrandom encoding.

Send all correspondence to Robert W. Cohn, The Elec-
troOptics Research Institute, Room 442, Lutz Building,

Errata

University of Louisville, Lousiville, Kentucky 40292; tel,
502-852-7077; fax, 502-852-1577; e-mail, rwcohn01
@ulkyvm louisville.edu.
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Pseudorandom encoding is a method of statistically approximating desired complex values with those values
that are achievable with a given spatial light modulator. Originally developed for phase-only modulators,
pseudorandom encoding is extended to modulators for which amplitude is a function of phase. This is accom-
plished by transforming the phase statistics to compensate for the amplitude coupling. Example encoding
formulas are derived, evaluated, and compared with a noncompensating pseudorandom-encoding algorithm.
Compensating algorithms encode a smaller area of the complex plane and can produce more noise than is pos-
sible for arbitrary pseudorandom algorithms. However, the encoding formulas have greatly simplified nu-
merical implementations. © 1998 Optical Society of America [S0740-3232(98)00704-2]

OCIS code: 050.1970.

1. INTRODUCTION

It is common to classify spatial light modulators (SLM’s)
as being either amplitude-only or phase-only, but, in prac-
tice, SLM’s usually exhibit some degree of coupling be-
tween amplitude and phase (e.g., as illustrated in Fig. 1).1
A notable example is liquid-crystal SLM’s, which can be
continuously changed from phase-mostly to amplitude-
mostly operation by rotation of a wave plate or a
polarizer>® Currently, no commonly available SLM’s
produce all complex values. Nonetheless, the design of
diffractive optics and the implementation of other signal
processing functions can often be simplified greatly if
there are no constraints on the complex values. When
the possible modulation values are constrained in some
way, it has become common to employ numerically inten-
sive global searches for functions that are implementable
and that meet desired performance criteria. In many
real-time applications using programmable modulators,
these computational constraints may rule out the use of
global searches. Although encoding does not usually
match the performance of global searches, it can provide
acceptable performance and numerically efficient and di-
rect methods of representing fully complex functions with
SLM’s that are not fully complex.

The encoding problem considered in this paper is that
of the design of Fourier transform holograms for imple-
mentation on available SLM’s. One of the earliest dis-
cussions of this problem is by Brown and Lohmann.*
Their methods use groups of pixels to represent a single
complex value. Thus the space-bandwidth product of
the SLM that uses such an algorithm will be reduced by
the factor corresponding to the number of pixels in the
group. Kirk and Jones introduced a point-oriented
method of encoding complex values with a phase-only
modulator.’ The phase is specified to be the product of
an amplitude-modulating function and a sinusoidal car-
rier. For discretely sampled phase-only SLM’s, at least

0740-3232/98/040868-16$15.00

two pixels are required to represent one period of the si-
nusoid. Thus the space—bandwidth product of the signal
is, at best, half that of the SLM. Cohn and Liang devel-
oped a method in which any desired complex values can
be mapped to a single pixel, thereby using the entire
space—bandwidth product of the SLM.6 The method, re-
ferred to as pseudorandom encoding, uses ensemble aver-
ages of the values that are achievable with the SLM to
represent the desired complex values. The actual modu-
lation produced by the SLM corresponds to a single
sample from the ensemble. The diffraction pattern of
this random modulation consists of an approximate recon-
struction of the desired diffraction pattern and a diffuse,
approximately white-noise background. The method has
also been interpreted as a carrier-based method.” Rather
than using a single-frequency carrier, as does the Kirk—
Jones method, a carrier of all frequencies is used. This
diffracts unwanted light into all spatial frequencies. By
a distribution of the unwanted light over the entire spa-
tial bandwidth, the average noise level can often be much
lower than the intensity of the desired reconstruction.
This permits reconstructions to be formed anywhere over
the bandwidth set by the grating frequency of the modu-
lator.

Pseudorandom encoding also has many similarities
with the parity sequence method of Chu and Goodman.®
This method realizes a desired complex value by vectorial
addition of two values of transmittance that are sepa-
rated by N/2 pixels in an N-pixel phase-only modulator.
This method perfectly reconstructs the desired diffraction
pattern, but only at N/2 resolvable locations in the dif-
fraction pattern. Between each sample of the desired re-
construction is a sample of the error signal (corresponding
to the vector subtraction of the two values of transmit-
tance), referred to as the parity sequence. Chu and
Fienup described a version of this encoding method
(named the synthetic coefficient method) in which the

© 1998 Optical Society of America
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Fig. 1. Amplitude-coupled phase modulation characteristics il-
lustrated in (a) rectangular and (b) polar plots. The character-
istics have continuous phase ranges of 4 (solid curves) and 27
(dotted curves). Although amplitude coupling is drawn as a lin-
ear function, it is not necessary that it be linear for example 3 in
Section 4.

transmittances of a pixel and its nearest neighbor are
programmed as a group.’ In this case the desired recon-
struction is centered around the optical axis, and the er-
ror signal is centered at the Nyquist frequency *N/2.
The desired reconstruction is most accurate on the optical
axis, and its accuracy tends to decrease out to *N/4,
where the error signal tends to dominate. Thus, as with
any other group-oriented method, these methods, by their
limiting the modulation bandwidth, are unable to use the
entire space-bandwidth product of the SLM. However,
in that pseudorandom encoding represents a desired com-
plex value with only one pixel transmittance, it is possible
to form a desirable reconstruction over the entire spatial
bandwidth N for an N-pixel SLM. The error signal also
reconstructs over this same spatial bandwidth. How-
ever, because pseudorandom encoding diffuses the error
signal to (on average) a uniform level over the spatial
bandwidth, it is often possible (depending on the desired
complex function) for the desired reconstruction to be
much brighter than the error. In that Chu and Fienup
were studying the encoding of complex-valued functions,
there are many other similarities between their methods
and pseudorandom encoding. These include issues on
trade-offs between diffraction efficiency and reconstruc-
tion accuracy, and the selection of phase degrees of free-
doms. There are even some mathematical similarities
between their encoding formulas and those for pseudo-
random encoding. These points will be drawn out at ap-
propriate places in the paper to distinguish the novel fea-
tures of pseudorandom encoding.

Pseudorandom encoding was originally developed for
phase-only SLM’s that produce analog phase over a range
of 27° and, since then, for SLM’s that produce analog
phase and two levels of amplitude.’® The phase-only en-
coding algorithms have been applied in laboratory dem-
onstrations of beam shaping!! and spot array generation.”
This paper generalizes the pseudorandom-encoding con-
cept for coupled modulators and describes new aspects of
the encoding algorithms that appear when the modula-
tion characteristics contain amplitude coupling. I will
specifically consider that amplitude can be expressed as a
function of phase. General derivations are presented to-
gether with concrete examples that use the two modula-
tion characteristics illustrated in Fig. 1. Encoding for a
variety of other characteristics can also be derived by the
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methods presented here. The use of these example char-
acteristics is done only to provide consistency throughout
the paper. A notable feature of the pseudorandom-
encoding algorithms developed to date is that their imple-
mentation requires only a few numerical calculations per
pixel. Thus, desired fully complex functions can be
mapped to electrically addressable SLM’s in real time by
using low-end serial processors. A central goal of this in-
vestigation is to determine to what degree it is or would
be possible to develop numerically efficient encoding algo-
rithms for amplitude-coupled phase modulators.

Although the focus of this paper is on the design of en-
coding algorithms themselves, I have also included (in
Section 8) a simulation of the diffraction patterns result-
ing from encoding one specific complex-valued function by
various encoding algorithms. The results are used to il-
lustrate the performance considerations of the algorithms
that are discussed in Sections 5-7, as well as to provide
comparisons with existing encoding algorithms (pseudo-
random and others) that have already been developed for
phase-only SLM’s.

2. GENERAL DESCRIPTION OF
PSEUDORANDOM-ENCODING AND
PREVIOUS ENCODING METHODS

All pseudorandom-encoding algorithms specify the modu-
lation of any given pixel in terms of a random variable.
The statistical properties of the random variable are se-
lected in such a way that the expected value, or average,
of the random modulation is identical to the desired, but
unobtainable, fully complex value. The desired complex-
valued modulation is written as a, = (a., ¢.), and the
resulting modulation by the SLM is a = (a, #), where
the ordered pairs are the polar representations of the
complex quantities. Complex quantities are indicated by
boldface type. The pseudorandom-encoding design state-
ment is, in general, to find a value of the ensemble aver-
age

(a) = f ap(a)da 6))

of the random variable a such that (a) = a.. The statis-
tical properties of a are determined by its probability den-
sity function (pdf) p(a). The pdf is selected to ensure
that the expected value of a and the desired complex
value are identical. This selection of a pdf corresponds to
solving the integral equation (1) for p(a). [The solution
is not unique, since the integral in Eq. (1) is a projection
from the multidimensional space of a into a single value
{(a). Various auxiliary conditions can be imposed on the
solution and are considered in this paper.] After an ap-
propriate density function is determined, the desired com-
plex value a, is encoded by drawing a single value of a
from a random distribution having the density function
p(a). Since the value of a is found deterministically by
computer, rather than from a random process occurring
in nature, the procedure has been named pseudorandom
encoding.

To this point the discussion has focused on encoding a
single complex value. The procedure can be applied to
encode spatially varying complex modulations a,. Spe-
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cifically, in this paper I will assume that the SLM is a dis-
cretely sampled array of pixels. With the use of i as the
spatial coordinate, the spatial samples of the desired com-
plex modulation, the density function, and the random
modulation are written as a,;, p;(a;), and a;. (This in-
dexing scheme can be conveniently applied to one- or two-
dimensional arrays, and it is not restricted to equally
spaced samples.)

The far-field diffraction pattern of the encoded modula-
tion a; approximates the desired diffraction pattern.
This can be seen by comparing the intensity of the desired
far-field diffraction pattern with the ensemble average
diffraction pattern that would result from the encoded
modulation. The intensity pattern of the desired diffrac-
tion pattern is

= [Faf |3 o]

where #{ - } is the Fourier transform operator; A .;(f;) is
the Fourier transform of a,;, the desired complex trans-
mittance of the ith pixel located at position i in the modu-
lator plane; and f, is the spatial coordinate across the
Fourier plane. (Although this equation can also be writ-
ten as a function of two spatial coordinates, one-
dimensional coordinates are used throughout to simplify
the presentation.) The expected value of the intensity pat-
tern from the encoded modulation has been derived for
the condition that the random variable a; for the ith pixel
is statistically independent of a; for all j not equal to i.
The ensemble average pattern is then expressed®!® as

2

, 2

I(f)) = I(f) + 2,- (A% - |AY), 3)

where A;(f,) is the Fourier transform of a;. The ex-
pected intensity consists of two terms. The first term is
the desired diffraction pattern from Eq. (2). The second
term represents the average level of background (e,
speckle) noise that is produced as a result of the random-
ness of the modulation. For the case of pixels that are
modeled as point sources, the average background noise
is of constant intensity for all frequencies f, (i.e., it is
white). Many useful diffraction patterns can be synthe-
sized for which I, is accurately approximated and the
noise level is adequately low.

The general encoding concept presented above makes
no assumptions about the properties of the SLM or the
specific statistical distributions selected. For coupled
modulators in which amplitude a(¢) is a function of
phase ¢, Eq. (1) becomes

(a) = f a(P)p(Plexp(jP)dy = ag exp(jh), (4

where ao = |[(a)| is the effective amplitude and ¢,
= arg({(a)) is the effective phase resulting from the aver-
aging operation. For the specific amplitude coupling
a(y) = 1, Eq. (4) also describes the effective amplitude
for phase-only modulators.

An important factor that controls the performance of
not only pseudorandom encoding but several other encod-
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ing algorithms as well is the absolute magnitude scaling
of the desired complex-valued function a,. I will use the
symbol

y = max(a) ®)

for this scaling factor. For SLM’s that are (usually as-
sumed to be) passive devices, it may not be possible with
some algorithms to encode complex values that exceed
unity magnitude. As will be shown below, for some algo-
rithms and modulation characteristics, the scaling pa-
rameter y can be constrained to be much less than unity.
Low values of y reduce the amount of energy in the recon-
struction and, even worse, can often increase the amount
of noise energy. This observation is probably most easily
seen for phase-only SLM’s.!! In this case all the energy
incident on the modulator is transmitted to the Fourier
plane. Thus, as y decreases, the desired portion of the
reconstruction, I,, becomes increasingly dim and the
noise component becomes increasingly bright. Conse-
quently, the desired reconstruction becomes increasingly
perturbed by noise and more difficult to see.

Chu and Fienup made quite similar observations for
the parity sequence method.? Making y < 1(A = 1/yis
used for the scaling parameter in their paper) reduces the
energy in the desired reconstruction but does not affect
accuracy. On the other hand, they also considered cases
for y> 1. For those desired magnitudes that exceed
unity, the SLM transmittance is set to exp[j arg(a,;)],
which they referred to as a kinoform but which today is
more frequently referred to as a phase-only filter. They
noted that it is possible to trade off the amount of energy
in the diffraction pattern versus reconstruction accuracy
for values of the scaling parameter, e.g., 1 < y <.
Similar sorts of trade-offs have been identified for some
types of pseudorandom encoding in Refs. 7 and 10. In
Sections 5-7 below, many new possibilities of blending to-
gether various pseudorandom (and also nonrandom) algo-
rithms to improve the quality of the diffraction pattern
are given. In Ref. 10 it has been shown that with blend-
ing it is even possible to obtain better reconstruction ac-
curacy for y > 1. Thus, from Section 5 on, I will fre-
quently describe the encoding range of the various
algorithms in terms of y.

Closely related to v is the diffraction efficiency of the
desired (as opposed to the resulting) complex-valued func-
tion. Through the use of Parseval’s relation, this can be
calculated in the modulation plane as

1 N
= — . 2_ 6
7 N 12=1 |acz| ®

This definition of diffraction efficiency has the physical in-
terpretation of the average energy transmittance of the
desired fully complex function. This result shows that
for two different values of scaling factor, y; and y;, the
two resulting diffraction efficiencies vary according to
71/72 < (y1/v5)%. This relationship, together with Eq.
(8), shows why (especially for pseudorandom encoding of
phase-only SLM’s) it is important to make the diffraction
efficiency large. For the coupled SLM’s considered in
Fig. 1, there is a significant amount of phase modulation,
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and, as a result, making diffraction efficiency large usu-
ally leads to improved performance. (Simulations illus-
trating such improvements are presented in Section 8.)

The diffraction efficiency also depends on the desired
function as well. This was recognized early in the devel-
opment of phase-only computer-generated holograms and
was also mentioned by Chu and Fienup® as well as Brown
and Lohmann.* This has led to the continued develop-
ment of code that optimizes the performance of the dif-
fraction pattern under the condition that only the inten-
sity of the diffraction pattern is of concern. The phases
(the so-called degrees of freedom) are varied, with the
goal of achieving near-unity diffraction efficiency and low
reconstruction error. Because of the time-consuming na-
ture of such optimizations, this type of design is not con-
sidered in this paper. Instead, a single complex-valued
function is selected for the design examples in Section 8.
Only the parameter y is varied as permitted by the vari-
ous encoding algorithms.

3. REVIEW OF PSEUDORANDOM
ENCODING FOR PHASE-ONLY
MODULATORS

This section reviews pseudorandom encoding for phase-
only modulators and discusses the desirable features
sought in developing a specific encoding formula. These
results for phase-only encoding are used to motivate the
derivations of encoding formulas in Section 4.

Various families of density functions p(y; (¢), o), pa-
rameterized in terms of the mean value (¢) and the stan-
dard deviation o of the phase distribution, were evaluated
in Eq. (4) of Ref. 6 and shown to produce all complex am-
plitudes having an amplitude between 0 and 1. In gen-
eral, a two-dimensional search over () and ¢ is required
to obtain a desired complex value. It was found (though
not explicitly stated in Ref. 6) that the solution method
could be simplified to a one-dimensional search by using
density functions that are symmetric around their means
(). This led to the specific result that ¢, = () and that
o can be found by a one-dimensional search to obtain a
desired value of effective amplitude in the range 0-1.
Thus parameters that describe the density function (such
as mean and variance) are individually associated with a
value of effective phase and a value of effective amplitude.
These conditions have led to simple expressions that can
be evaluated with low numerical overhead for pseudoran-
dom encoding of phase-only modulators. These points
are brought out by way of the following example.

Example 1: Derivation of a pseudorandom phase-only
encoding method. In Ref. 6 the effective complex ampli-
tude was derived by using the uniform family of density
functions [see Fig. 2(a)]

1 —_
p(g; (), v) = 5 rect(‘p——;(ijz), )

which is specified in terms of the two parameters (¢) and
v, the spread of the density function (where the spread is
more conveniently used instead of the standard deviation
o = v/\[12 in the case of uniform distributions). Substi-
tuting Eq. (7) into Eq. (4) for a(¢) = 1 gives
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(a) = sinc(v2m)exp(j(¥)) = ag exp(jihp).  (8)
The amplitude is then identified as (solid curve in Fig. 3)

ag = [sine(¥/27)], €)]
and the phase is identified as
(¢), sinc(v/27) > 0
Yo = . ) (10)
() + =, sine(v/27) < 0

where the phase offset of 7 reflects sign changes of the
sinc function. All values of effective amplitude between 0
and 1 can be realized by limiting the maximum spread to
27. The effective complex amplitude then simplifies to

{a) = sinc(v2m)exp(j{¥)), O0=wv=27. (11)

Equating Eq. (11) with the desired complex value a ., it is
found that (¢) = ¢, and that

v = 27 sinc (a,). (12)

The desired value of a . is encoded by selecting a random
value of phase i from the distribution in Eq. (7) for the
specified values of () and ». In practice, this distribu-
tion is simulated by transforming the uniform random
variable s e [0, 1], which has the pdf py(s) = rect(s
— 1/2), into a random variable ¢ that has the required

-
Nf=-

A A
g— -— Y — g - Y —
SV )
0 T 04 Y
v, Y
Phase Phase
@ )]

Fig. 2. Probability density functions (pdfs) for (a) uniform and
(b) binomial random distributions of phase. In Section 4 effec-
tive pdf’s of these same forms are sought.

— phase-only

Effective Amplitude

Phase Spread

Fig. 3. Effective amplitudes for examples 1 and 2. The ampli-
tude coupling used is identical to the solid curves in Fig. 1. The
curve without a legend (dashed-dotted—dotted curve) is the ef-
fective amplitude for ¢, = —m with the maximum effective am-
plitude normalized to unity. The two other curves even more
closely match the sinc (phase-only) curve if they are normalized
similarly.
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pdf of Eq. (7). The random variable s is simulated by us-
ing the standard uniform random-number generator s;
= ran(s;_;). The appropriate random value of phase is
then drawn by using the formula

¢ = (¢) + y[ran(s) — 1/2]. (13)

Equation (13) shows that pseudorandom encoding for
phase-only modulation can be accomplished with a small
number of mathematical operations. The speed of com-
putation can be extremely fast if » and ran(s) in Egs. (12)
and (13) are calculated with the use of lookup tables.

The encoding formulas (12) and (13) have a form that is
quite similar to the parity sequence method of encoding.
For both techniques there is a desired phase (i.e., (¢) for
pseudorandom encoding) and an effective-amplitude re-
duction (corresponding to, in the case of pseudorandom
encoding, a random phase offset selected over a spread v
and, in the case of the parity sequence method, a fixed
phase deviation between the two transmittances). In
pseudorandom encoding, a spread of 2m produces an effec-
tive amplitude of zero [see Eq. (11)], whereas in Chu and
Goodman’s method a nonrandom spread of = effectively
encodes a zero. An even closer mathematical correspon-
dence is described for the algorithm derived in example 3
of Section 4.

4. DERIVATION OF PSEUDORANDOM-
ENCODING ALGORITHMS FOR COUPLED
MODULATORS

In this section the pseudorandom-encoding approach that
was described in Section 3 is modified so as to compensate
for the effects of amplitude coupling. Following this ap-
proach leads, once again, to encoding formulas that have
low numerical overhead. The subsequent sections con-
sider the range of realizable values (as measured by the
value of 7) that can be encoded on coupled modulators by
these algorithms and modifications of the algorithms that
extend the encoding range.

The use of symmetric pdfs with amplitude-coupled
modulation characteristics usually does not produce de-
coupling between the effective amplitude and the effective
phase. The reason is that in Eq. (4) the coupled ampli-
tude a(¥) is mathematically identical to a weighting func-
tion that biases the average of the random phasor exp(j)
away from exp(j()). The bias is not usually constant, so
that a two-dimensional search is required to find a solu-
tion to (ag, ) = (a., ). Alternatively, the form of
the pdf can be chosen to compensate for amplitude cou-
pling, so that it becomes possible to specify ¢y = ¢, di-
rectly. This is seen by defining the term p. (i)
= a(y)p(¥) in Eq. (4), which will be referred to as the ef-
fective pdf. Written this way, Eq. (4) has a form identical
to that for the effective complex amplitude for phase-only
encoding [Eq. (4) with a(¢) = 1]. If the effective density
function is symmetric about the amplitude-weighted ex-
pected value of phase

(et = f Ypex(¥)d ¢, (14

then the effective phase y, will equal ()¢ even though
¥ is not equal to the average phase (¢). Thus the selec-
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tion of the density function p(y) that makes the effective
density function p.s(¢) symmetric permits the desired
phase i, = ¢, to be directly specified as the center of
symmetry of the effective density function.

Although a desired value of i, can be directly specified,
this approach does not entirely decouple ay from . It
does, however, produce the desired numerical simplifica-
tion in that the effective amplitude a, becomes a one-
dimensional function a(o; ¥g) of o (or v) and the fixed
parameter ;. The desired value of amplitude corre-
sponds to the value of o that satisfies ay(o; ¥.) = a..
From the standpoint of numerical efficiency, sequential
encoding of phase and amplitude is preferable to a simul-
taneous two-dimensional search for the encoding param-
eters.

The derivation of encoding formulas for coupled modu-
lators also uses the following two results from
probability'%:

1. The effective pdf and the pdf p(y) are not fully
specified until a scale factor is determined that ensures
that the integrated area of p(y) equals unity. This re-
quirement is simply part of the definition of a pdf. Spe-
cifically, the probability of the certain event is unity.
This requirement can be expressed in terms of the cumu-
lative pdf

[
P(y) = f_ p($)de. (15)
The random variable ¢ has total probability P(¢) = 1 for

Y=,

2. Although random-number generators for arbitrary
random distributions are not usually available, it is pos-
sible, by using a suitably chosen function, to transform
the statistics of the uniform random variable s into the
desired statistics. The function is known to be the in-
verse of the cumulative distribution function!?:

¥ =P s). (16)

The random variable ¢ is then éimulated by performing
the function in Eq. (16) on the numbers produced by the
random-number generator ran(s).

The procedure of deriving encoding formulas by this
compensation approach is illustrated by the following two
examples. In the first example (example 2), the
amplitude-coupling function is given as an explicit func-
tion. In the second example (example 3), a solution is
found in closed form without the amplitude-coupling func-
tion being given explicitly. This second form would be es-
pecially useful for SLM’s for which the amplitude cou-
pling can be changed in situ (for instance, liquid-crystal
SLM’s that are combined with rotatable polarizers or
wave plates).

Example 2: Derivation for amplitude-coupling an ex-
plicit function. The amplitude-coupling function [solid
line of Fig. 1(a)] is the linear function of phase

oY) =my+b, el[-2m 2], an

where m is the slope and b = a(0). A family of effective
pdfs that is similar in form to Eq. (7) [Fig. 2(a)] is

Pesr(¥) < rect{ (¢ — ¢o)/v]. (18)
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A single pdfis specified by two parameters: spread v and
bias . After the correct normalizations are determined
so that each pdf of the family p(¢; ¢, v) has unit area,
the pdf that compensates a(¢) is identified as

1
p(¥) = T bim

Yo + v/2 + b/m)]'1 (lﬁ - glfo)
rect " .

X |\ G =R T blm

(19)

With the use of Egs. (15) and (16), the transformation
from the uniform random variable s to the random vari-
able ¢ is found to be
(o + v/2 + b/m)® b 20
v= (Yo — v/2 + b/m)* 1 - o 20)
Substitution of Eqs. (17) and (19) into Eq. (4) gives a
closed-form expression for the effective complex ampli-
tude of

Yo + v/2 + bim\|t | v .
In m sine PP exp(Jj o).
(21

Note the similarity between this equation and Eq. (11) for
phase-only pseudorandom encoding. Furthermeore, in
the limit, as the slope m approaches zero, the effective
complex amplitude for the coupled modulation ap-

{(a) = mv

a(hy + v2)8(Y — ¢ + v/2) + alghy — vI2)8(Y — Yo — v/2)
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of ¢ over a 27 range. For the phase-only SLM the
modulation characteristic is periodic, which eliminates
the need for a SLM that produces phase in excess of 2.
Thus the algorithm proposed in example 2 suffers from
the practical disadvantage that most SLM’s available to-
day barely produce a 27 phase range. A second disad-
vantage with the approach described in example 2 is that
the algorithm needs to be custom designed for each indi-
vidual modulation characteristic. Both disadvantages of
the approach in example 2 are overcome in example 3 by
designing a pseudorandom-encoding algorithm with the
use of a different class of statistical distributions and by
treating the amplitude modulation as a periodic function
of phase.

Example 8: Derivation for amplitude coupling that is
not an explicit function. The amplitude-coupling func-
tion is assumed be periodic. Figure 1(a) (dotted lines) il-
lustrates a specific coupling function. The coupling is
linear with phase, but no specific form is required or con-
sidered in this derivation. The discrete effective density
function [see Fig. 2(b)]

per(¥) = 8(¢ — o + vI2) + 8¢ — Yo ~ ¥I2), (22)

where &( - ), the Dirac delta function, is especially simple
to use, since the amplitude-weighting compensation de-
pends on only the amplitude values at the two points ¢
= ¢ = v/2. Under these assumptions the analysis per-
formed in example 2 can be repeated to give the pdf

p(y) =

proaches the effective complex amplitude for phase-only
modulation.

The prescription for pseudorandom encoding, (a)
= a,, and the relationship among (a), », and ¢, in Eq.
(21) can then be used to specify the following encoding al-
gorithm:

select initial values for s, b, and m

Fori = 1 to N pixels

Yoi — WYeis Qoi — Qs 8; — ran(s; 1)

solve Eq. (21) for v; with ay; and ¢; specified
calculate ¢; from Eq. (20) with s;, g;, and »; specified.

To achieve the greatest computational speeds, the values
of s;, v;, and y; would be precomputed and stored as
lookup tables. Thus, by including amplitude compensa-
tion, it is possible to pseudorandom-encode coupled modu-
lators in a manner similar to the encoding of phase-only
modulators. The algorithms are similar in structure,
and the encoding formulas are similar in form to those for
pseudorandom phase-only encoding. The procedure il-
lustrated in example 2 can be followed to derive encoding
formulas for various other coupling functions and effec-
tive density functions.

In example 2 the availability of a 47 phase modulation
range was assumed. This ensures that an effective am-
plitude between a(y,) (for a random phase spread
v = 0) and zero (v = 27) can be encoded for any value

a(de = v2) F aldy + W) (23)

p and the effective complex amplitude

a,=(a)

2a(yy + v2)a(yy — v/2) .
2T + ) + algy = w3y “OSW2explith)-

I

(24)

The ratio in Eq. (24) contains all the terms that compen-
sate for the amplitude coupling. This term can be seen to
be a ratio of the square of the geometric mean divided by
the algebraic mean of the two amplitude samples a(i,
+ »/2). This ratio reduces to a constant for phase-only
SLM’s. The uniform random variable s (from the avail-
able random-number generator) can be transformed into
the random variable of phase by the simple threshold test

L a(go + v/2)
g={ 07" S GG =R + althy T VD,

!ﬁo + v/2

otherwise
(25)

These results are especially useful in that this closed-
form result applies to any function a(y) for which ¢has a
range of at least 2. This formula can be applied even
when samples are randomly selected from either side of
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an amplitude discontinuity [such as the discontinuity at
¢ = 0 in Fig. 1(a)l. The encoding algorithm is identical
to the algorithm following example 2 if Egs. (24) and (25)
are used in place of Egs. (21) and (20), respectively.

The mathematics for this encoding algorithm are sur-
prisingly similar to those for the parity sequence method.?
This is most clearly seen for the case in which the cou-
pling function a(y) = 1 for all values of . The effective
amplitude in Eq. (24) then becomes a¢, = cos(1/2), and the
effective phase is ¢, = ¢y. These effective values are
identical to those that are encoded by the parity sequence
method. Furthermore, the actual modulation produced
by the pseudorandomly encoded phase-only modulator is
either a = exp[j(¢ + #/2)] or a = exp[j(¥ — ¥/2)] with
probability 1/2. The only difference with the parity se-
quence method is that each of these transmittances is
produced by a pair of spatially separated pixels. In gen-
eral, when there is coupling, the probability of selecting
one or the other value of a is adjusted [(according to Eq.
(25)] so that the weaker modulation is selected more fre-
quently than the stronger modulation. This compensa-
tion effectively attenuates the stronger modulation, so
that both values of modulation are effectively of equal
strength.

5. NUMERICAL EVALUATION OF THE
ENCODING FORMULAS AND
IMPLEMENTATION ISSUES

The characteristics and the implementation of the encod-
ing formulas can be appreciated by considering some nu-
merical simulations of effective amplitude. The
amplitude-coupling functions shown in Fig. 1 will be
used. This corresponds to using a slope of m = 1/47 and
b = 1/2 in the equations in example 2. The effective am-
plitudes found from Eq. (21) are plotted in Fig. 3. In ex-
ample 3 the amplitude-coupling function used is similar
to BEq. (17). A slope of m = /4w, and b = 1/2 for ¢
> 0 and b = 1 for ¢ < 0, are used to describe the two
line segments [the dotted lines in Fig. 1(a)]. Using this
coupling function in Eq. (24) produces the effective ampli-
tudes shown in Fig. 4.

Ll TP — phase-only
o e Y = -T0/8
S - = -T0/2
2 — Y= /4
Q.
£
<
2
3
5
0 r \
o n

Phase Spread

Fig. 4. Effective amplitude curves for example 3. The ampli-
tude coupling is identical to the dotted curve in Fig. 1(b). The
effective amplitudes for phase-only encoding with use of the pdf
from Fig. 2(b) are included for comparison.
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Numerical results for example 2. Figure 3 shows that
the range of possible effective amplitudes e depends on
the value of the effective phase ¢,. For a spread of v
= 0, the effective amplitude of each curve is identical to
a(ig), and as the spread increases, the effective ampli-
tude decreases monotonically from this point. The shape
of each curve is very close to that of a sinc function, as is
illustrated by the normalized version of the effective am-
plitude for the ¢y = —7 curve. The two other effective
amplitudes are even closer in shape to that of a sinc. Nu-
merically efficient solutions of » that are only slightly
more involved than those for phase-only encoding can be
developed by using this result.

The curves plotted in Fig. 3 correspond to those for
which ¢ is contained between —7 and 7. For this range
of effective phase, all the curves range between a(y,) and
0. For |yg| > = the 47 range of the modulator limits the
maximum spread to 2(2m — |¢|). Thus, for these par-
ticular values of i, the spread cannot be made large
enough to continuously reduce a curve of effective ampli-
tude to 0. In this subsection I will consider the implica-
tions of using only the effective-amplitude curves for
which —7 < ¢, < 7, and I will consider the more general
case, for which —27 < ¢, < 2, in Section 6.

If one chooses to use the Fig. 3 curves to
pseudorandom-encode the coupled modulator, the desired
complex function a, must be scaled by an appropriate
choice of y [see Eq. (5)]. Consider that if y > 0.25, then
amplitudes for some values of phase cannot be encoded.
However, if ¥ = 0.25, then any complex value out to a cir-
cular radius of y can be pseudorandom encoded. Since y
can be as large as 1 for pseudorandom encoding on a
phase-only modulator, it can be seen that the diffraction
efficiency 7 of the coupled modulator will be 1/16 of the
efficiency of the phase-only modulator [see Eq. (6)]. Of
even more concern than efficiency is that by scaling the
maximum magnitude to y = 0.25, large random phase
spreads are needed to encode many of the desired complex
values. For instance, for the ¢, = 7 curve in Fig. 3, all
spreads are between approximately 1.57 and 27. Thus
substantial amounts of random noise can be generated by
applying this particular algorithm for a SLM that has the
characteristic of Fig. 1. This observation has motivated
the development of various modified encoding algorithms
(presented below) for which y can be larger. Of course, if
the amplitude coupling is not as strong as that considered
in this example, then the value of y can be made corre-
spondingly larger. Certainly, such an algorithm would
be well suited to SLM’s that are phase mostly (amplitude
variation between 0.9 and 1).%% The example 2 encoding
algorithm appears to adapt phase-only encoding better to
phase-mostly SLM’s than to SLM’s for which phase is
strongly coupled to amplitude.

There are other options for selection of the amplitude
degree of freedom. Consider (for the Fig. 3 results) that
vis between 0.25 and 0.75. For the complex values that
cannot be pseudorandom encoded, one or more additional
encoding methods would be combined with the
pseudorandom-encoding formula. One appropriate en-
coding technique is the deterministic mapping method
that maps complex values to the closest point on the
modulation curve.!® Earlier studies on encoding
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‘complex-valued composite functions onto phase-only'*
and biamplitude phase'® modulators have already demon-
strated that the blending of deterministic and pseudoran-
dom encoding can produce performance that is better
than either. The numerical implementation of blended
encoding algorithms is not substantially more involved.
However, it is more numerically intensive, since, at
present, the only way to specify the scaling of the desired
complex values that produces the best encoding perfor-
mance is to perform the encoding repetitively for different
scaling factors and then evaluate the performance of the
resulting modulation for each encoding.

Summarizing the Fig. 3 results: It has been shown
that the encoding of weakly coupled (phase-mostly) SLM’s
can be performed with a small amount of additional nu-
merical overhead and a slight reduction in the perfor-
mance as compared with that of phase-only pseudoran-
dom encoding. For strongly coupled SLM’s the reduction
in performance can be significant and may call for the de-
velopment of more numerically involved algorithms that
blend individual pseudorandom-encoding algorithms with
other encoding algorithms.

Numerical results for example 3. The evaluation of the
effective amplitude shows that there are three types of
effective-amplitude curves. These are for (I) 7/2 < ¢y
< 8u/2, (ID) 0 < ¢y < #/2, and (III) 37/2 < ¢y < 2m.
Similar to the results of example 2, the type I curves de-
scend monotonically from a () to 0 as illustrated in Fig.
4 by the curve ¢, = —w/2. (Because of the periodic as-
sumption, this is also referred to as the ¥y = 37/2 curve.)
With the use of a binomial distribution, zero amplitude is
realized for a spread of 7 as opposed to 27 in example 2.
For type II curves (e.g., the ¢y = @/4 curve in Fig. 4), a
discontinuity in the effective amplitude is found for
spread v = 2¢;. This is due to the discontinuous jump
between 0.5 and 1 in the value of the term a (¢, — v/2) in
Eq. (22). The jump produces a range of values for which
there are two solutions for a desired effective amplitude.
For some values of ¢, the effective amplitude can be
even larger than the effective amplitude for zero spread.
For the type III curves (e.g., the ¢y = —#/8 curve in Fig.
4), there is a discontinuity at v = —2, [for ¢, expressed
as a negative angle or v = 2(27 — ) for ¥, expressed
as a phase between 7 and 27]. The discontinuity in ef-
fective amplitude for any given curve shows that some
values between a(¢,) and 0 cannot be encoded by the for-
mulas in example 3.

The region of the unit disk for which the desired com-
plex values can be encoded is shown in Fig. 5. Complex
values in the clear region can be pseudorandom encoded,
and values in the striped region cannot. The dotted
curves represent the values to each side of the discontinu-
ity for the type II curves. Note that, for ¢, between 0
and slightly less than #/4, effective amplitudes greater
than a (i) can be encoded. The portion of the striped re-
gion forming a peninsula that spirals into the origin cor-
responds to the unrealizable complex values for the type
Il curves. Its boundaries correspond to the values on
each side of the discontinuity of the type III curves.

For the 47 modulator (with use of the example 3 algo-
rithm), it is possible to scale the complex values so that all
values can be pseudorandom encoded. For the results in
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Fig. 5. Map of the effective complex amplitudes that can be
pseudorandom encoded (clear region) and those values that can-
not be pseudorandom encoded (striped region) on the unit disk by
the encoding method from example 8. The amplitude coupling
used is the same as the dotted curve in Fig. 1(b), and it is replot-
ted in this illustration. Note that for effective phases between 0
and ~n/4 the effective amplitude can be larger than the ampli-
tude of the coupling function. For effective phases between
—7/2 and 7/2, the effective-amplitude curves (Fig. 4) have jump
discontinuities. For effective phases between 0 and 7/2, the val-
ues on each side of the discontinuity are plotted as dotted curves.
For effective phases between —n/2 and 0, the discontinuities
form the boundary of the portion of the unrealizable region that
has radii less than the amplitude-coupling function.

this subsection for the 27 modulator, there is no value of
v that will permit the pseudorandom encoding of all de-
sired complex values. This does not mean that the ex-
ample 3 formulation is less desirable than the formula-
tion in example 2. One advantage of the example 3
method is that it requires a 27, as opposed to a 47, modu-
lator. A second advantage is that it encodes a much
greater area of the unit disk than the example 2 method.
Blending with the deterministic encoding algorithms, as
described above, can be used to encode values in the
striped peninsular region of Fig. 5. As discussed in Sec-
tion 2, it is even possible that using deterministic algo-
rithms to encode values outside the unit disk (i.e., y > 1)
can sometimes produce better performance. Thus deter-
ministic encoding could be used to realize all values on
the striped portion of the unit disk, in addition to the com-
plex values that have amplitudes greater than unity.

From the results in this section, it can be seen that
some complex values that are encoded by one pseudoran-
dom algorithm may not be encoded by another. This is
due to the specification of the form of the pdf’s in the deri-
vation of the encoding formulas. Thus, rather than using
a deterministic algorithm for these values, it is possible to
increase the area of the unit disk that can be encoded by
combining two pseudorandom-encoding algorithms.
However, as mentioned in Section 2, there are an un-
countable number of pdf's that satisfy Eq. (1). This
raises the question: What is the total extent of the com-
plex plane that can be encoded by all possible
pseudorandom-encoding algorithms? This is answered
in Section 6, which also contains a discussion of various
approaches for modifying the pseudorandom-encoding al-
gorithms to increase their range.
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6. EXTENDING THE RANGE OF
PSEUDORANDOM ENCODING

Four methods of extending the complex range are de-
scribed. For the sake of clarity, the discussion pertains
specifically to the examples presented herein, even
though the results can be similarly applied to other cou-
pling functions and pdfs. The four methods are (1) for
the 47 modulator, using all effective values of phase ¢,
between —27 and 27 for encoding; (2) for the 47 modula-
tor, blending the example 2 and example 3 pseudorandom
algorithms; (3) for either modulator, randomly combining
two pseudorandomly encoded values to encode a previ-
ously unrealizable value; and (4) for the 27 modulator, us-
ing a pseudorandom encoding that does not compensate
for amplitude coupling. This last method is also used to
evaluate which values can and cannot be implemented by
any possible means of pseudorandom encoding.

Method 1. The example 2 pseudorandom encoding al-
gorithm has been applied above to realizing complex am-
plitudes for effective phases —# < ¢y < w. The ratio-
nale for this is that spread » can then be varied between 0
and 27, which allows all values of effective amplitudes be-
tween a(i,) and 0 to be encoded for any given effective-
amplitude curve (e.g., those shown in Fig. 3). Thereisa
substantially greater area of the complex plane that can
be pseudorandomly encoded if the effective complex am-
plitudes for 7 < ¢/, < 2 are also admitted. (Additional
solutions for effective phase —27 < yy < —7 are also
possible but are not considered here, since these solutions
do not increase the area that can be pseudorandomly en-
coded.) Over this extended range of effective phase, the
spread v can be varied from 0 to a maximum of 2(27
— ). The minimum values of effective amplitude cal-
culated by using Eq. (21) are plotted (dashed curve) in
Fig. 6. Figure 6 shows that a substantially greater area
of the complex plane can be encoded than had originally
been considered for the example 2 method. Previously,
the complex values had been scaled to a maximum ampli-

Fig. 6. Map of the effective complex amplitudes that can be
pseudorandom encoded (clear region) and those values that can-
not be pseudorandom encoded (striped region) on the unit disk by
the encoding method from example 2. Additionally, the mini-
mum value of effective amplitude has been calculated for phases
between 7 and 27 by using Eq. (21) (dashed curve). This has
increased greatly the number of complex values that can be en-
coded. The amplitude coupling used is the same as the solid
curve in Fig. 1(b), and it is replotted in this illustration.
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tude of y = 0.25 to use the pseudorandom-encoding algo-
rithm by itself. The point where the dashed curve
crosses the effective-amplitude curve a(¢) is ¢, = 47/3.
Thus the desired amplitudes can be normalized to y
= a(47/3) = 0.33 instead of y = 0.25. Also, a large
area (the clear peninsular region) is available for pseudo-
random encoding if y > 0.33 is used.

Method 2. Although neither the example 2 nor the ex-
ample 3 encoding algorithm is capable of encoding all
complex values, each can encode values that the other
cannot. Even though the unrealizable area for the ex-
ample 2 algorithm is larger than that for the example 3
algorithm, the two algorithms taken together encode an
even larger area than the two taken separately. By over-
laying Figs. 5 and 6, it can be seen that all complex values
having amplitudes of ¥ = 0.43 or less can be encoded by
combining the two algorithms.

Method 3. Two effective complex amplitudes may be
pseudorandomly combined to realize values in the penin-
sular regions in Figs. 5 and 6. I will show this for the
specific condition that both effective amplitudes have the
same effective phase ¢,. This is in keeping with the goal
throughout this paper of producing encoding formulas for
which a range of effective amplitudes can be specified as a
function of spread for any given value of effective phase.
In general, the new effective complex amplitude can be
written as

(a) = d(a)y + (1 — d)(ah, (26)

where the subscripts u and 1 are used to distinguish the
upper/larger and lower/smaller effective complex ampli-
tudes. These values could be selected to correspond to
the complex amplitudes to each side of the peninsular re-
gion at a given effective phase. The value d is the prob-
ability of randomly encoding the upper value, and 1 — d
is the probability of encoding the lower value. Under
this set of assumptions, the effective complex amplitude
is written as

(a) = [da, + (1 — d)a,lexp(j¥o), @27

where ¢, and @; are the individual effective amplitudes.
The effective amplitude a for Eq. (27) can be seen to pro-
duce any amplitude between ¢, and a; for values of d be-
tween 0 and 1. This shows that the method could be
used to encode the values in the peninsular region. This
method generalizes the biamplitude phase encoding algo-
rithm in Ref. 10 by using effective amplitudes instead of
amplitudes from the modulation characteristic. Method
3 can also be viewed as encoding with the use of a differ-
ent density function. This can be shown by explicitly ex-
pressing the effective amplitudes in Eq. (27) as integrals
with the use of Eq. (1). The arguments of the integrals
can be collected to form a single integral. This permits
the identification of the single pdf

p(‘/’? d) = dpu(l//; ‘/,0: Vu) + (1 - d)pl(lp; lpO, 1}l)’
(28)
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where v, and v; are the two values of spread and p, and
p; are used to distinguish the two density functions and
the new density function p from each other. Although
the pdf p is shown to depend on only the parameter d, it
also depends on v, , v;, and ;. These dependencies are
not shown because in this encoding method the effective
complex amplitudes (a), and (a); are determined indi-
vidually, which completely determines p, and p;. Then
only d needs to be specified to complete the encoding.

If this extension is used, it becomes possible to
pseudorandom-encode the entire peninsular regions, in
addition to the clear areas in Figs. 5 and 6. If this
method is used with the example 2 algorithm, then all
complex values of amplitude y = 0.5 or less can be en-
coded by pseudorandom encoding alone. Ifthe example 3
algorithm is used instead, then fully pseudorandom en-
coding can be used if the complex values are normalized
to a maximum amplitude of approximately v = 0.56 (on
account of the presence of the clear peninsular region in
Fig. 5 that covers the phase range of 0 to approximately
7l4).

Method 4. The pseudorandom-encoding range can be
extended further by using different pdf’s in deriving the
encoding formulas. The realizable range can be evalu-
ated by using, as in example 3, a binomial distribution.
However, in this evaluation the distribution is not con-
strained to compensate for bias drift of the effective
phase, and the spread is not constrained to be symmetric
about the value of effective phase. The evaluation fol-
lows from considering the effective complex values that
can be encoded by a given pair of complex values a; and
a on the modulation characteristic. Using the binomial
density function in Eq. (4) gives an expression for the ef-
fective complex amplitude of

Fig. 7. Map of the effective complex amplitudes that can be
pseudorandom encoded (clear region) and those values that can-
not be pseudorandom encoded (striped region) on the unit disk by
use of all possible binomial distributions. The amplitude cou-
pling (dashed curve) is the same as the dotted curve in Fig. 1 (b).
For a given pair of samples on the amplitude-coupling curve, any
effective complex amplitude can be realized on the line segment
connecting the two points. This is shown for four pairs of
samples. Any of the three thin lines could be used to produce
the same effective complex amplitude at their common intersec-
tion. The thick line segment and the amplitude-coupling curve
bound a convex set of all complex values that can be realized by
pseudorandom encoding for the particular modulator character-
istic.
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(a) =day + (1 - d)ay, (29)

where d is the probability of selecting a;. The expres-
sion is identical to Eq. (26), except that the sample points
are constrained to lie on the modulation characteristic.
Equation (29) is recognized as the expression for a line as
a function of the variable d. Thus any value lying on the
line segment between a; and a, can be encoded. This is
illustrated in Fig. 7 for four pairs of points. The three
line segments drawn as thin lines all cross at a common
point. Thus any one of these segments, or an infinite
number of other line segments, could be used to encode
this particular complex value. This observation is
equally valid for any desired complex value found in the
clear region in Fig. 7 that is bounded by the modulation
characteristic curve (dashed curve) and the thick line seg-
ment. The interior of this boundary is a convex set of all
the complex values that can be encoded by the union of all
possible pseudorandom-encoding algorithms. Values on
the boundary are also realizable, but they have only a
single possible solution. Values outside the boundary
cannot be realized because the ensemble average of a ran-
dom phasor never produces a magnitude that is larger
than the average magnitude of the phasors in the en-
semble.

This simple evaluation is also useful for evaluating the
range over which pseudorandom encoding can be applied
to modulators that do not produce a full 27 range of phase
modulation. For the specific curve and construction in
Fig. 7, pseudorandom encoding can be used to encode
fully complex functions of any phase and amplitude less
than approximately y = 0.58. This means that the same
function encoded by method 4 would have [by Egs. (5) and
(6)] a diffraction efficiency 5.4 times greater than the ex-
ample 2 algorithm for which y = 0.25. The efficiency of
method 4 would also be one third of that for pseudoran-
dom phase-only encoding where y = 1.

These results answer the question about the maximum
range possible. They also raise a new question about
which of the possible solutions to the encoding problem is
preferable. The approaches considered to this point em-
phasize the finding of formulas that are simple to imple-
ment and that are numerically efficient. For the ex-
ample 3 algorithm, in which amplitude compensation was
used to simplify the implementation, no more than two bi-
nomial distributions (i.e., line segments) could be found to
realize a desired complex value, and for some desired and
realizable complex values no distribution could be found.
This section shows that the limitations introduced by
these particular assumptions can be substantially re-
duced by the use of Methods 1-3. The benefit of simple
implementations is that they provide great flexibility and
easy access to the complex modulating properties of a
SLM in an environment that can require real-time pro-
gramming of the SLM. If the highest levels of optical
performance are required and computation time is not a
significant concern, then there are many numerically in-
tensive design algorithms that can produce near-optimal
optical performance. These considerations have led to
my emphasis on simply implemented algorithms. How-
ever, it would be possible instead to derive
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pseudorandom-encoding algorithms on the basis of mini-
mizing the random errors produced by encoding itself.
This is the subject of Section 7. The resulting algorithms
appear to be more numerically involved, and, for this rea-
son, it is not my intent to recommend them. Instead, the
minimum-error (and also the maximum-error) pseudo-
random encoding formulas are used to bound the errors
produced by amplitude-compensated algorithms.

7. ERROR ANALYSIS OF PSEUDORANDOM
ENCODING AND MINIMUM-ERROR
ENCODINGS

Encoding error defined. A general error analysis of pseu-
dorandom encoding, not only for phase-only but also for
any SLM modulation characteristic is presented in Ref. 6.
Expressions are presented that, in addition to describing
the expected intensity, describe the standard deviation of
the intensity pattern. For the discussions in this section,
I evaluate only the expected intensity, which is given in
Eq. (8). The noise, or encoding error, has been identified
in Section 2 as the second term in Eq. (3). The ith ele-
ment of this summation corresponds to the encoding error
produced by the ith SLM pixel. The evaluation is most
directly performed and the key results are most readily
apparent under the assumption that the pixel aperture is
an ideal impulse (Ref. 6 can be consulted for further
analyses that include finite-width apertures). For this
set of assumptions, the error for a single pseudorandom-
encoded pixel is

€= Ja’"(«//)p(w)dw- a2 (30)

Since the desired complex amplitude is fixed, the integral
is the only term that can be minimized. The integral is
minimized by individually minimizing the integrand at
each value of . Since a(¢) is a given function, the mini-
mum is produced by selecting p (¢) to be minimum where
a(y) is maximum. The minimization is subject to the
two constraints that (1) the integrated area of the density
function is unity and (2) the value a, = (a) in Eq. (4) has
a solution. The generality of Eq. (30), together with the
constraints, makes it difficult to draw additional conclu-
sions about minimum-error pseudorandom encodings
without further specialization of the problem.

Consider the specific problem of determining which bi-
nomial distribution produces the least encoding error (as
illustrated in Fig. 7). Under this set of constraints, the
encoding error in Eq. (30) can be expressed as

e =d(1 — d)[a,® + as® — 2a;a;3 cos(¢; — ¥3)]
subject to a, = da; + (1 — d)a,, @31

where a; = (a;, ¥;). The error can be minimized by
separately minimizing the product of the binomial prob-
abilities and minimizing the term in brackets. The prod-
uct d(1 — d) is minimized by maximizing the distance
betweend and 1 — d. The term in brackets is the famil-
iar formula for the law of cosines. It is minimized by
minimizing the difference between the two phases. The
constraint in Eq. (31) still makes it difficult to draw a use-
ful conclusion. If this constraint is substituted into the
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encoding error in Eq. (31) to eliminate the value of prob-
ability d, then this equation reduces to

e=|a,— aql|la, — agl. (32)

Written in this form, the pseudorandom-encoding error
can be directly interpreted as the product of the lengths of
the line segments a; — a, and a, — a,. For a fixed
length segment a; — a,, the product is minimized by
making one of the two segments as large (or as small) as
possible. However, the length of a; — a, generally var-
ies, depending on the form of the amplitude-coupling
function a(¢). Thus further analysis is usually required
to find the solution that produces a minimum error.

Numerical analysis of encoding errors for binomial dis-
tributions. Minimum-error encoding formulas have been
determined numerically for a number of desired complex
values for the modulation characteristic in Fig. 7. The
method of finding the minimum-error encoding formula
for a single complex value consists of repeated evalua-
tions of the error e by Eq. (32). The steps are the follow-
ing: (1) A value of a, is specified; (2) a value of phase
is  specified; (8) the complex amplitude a;
= a(y)exp(jiy) is calculated; (4) a, is found by solving
for the point on the line through a; and a, that intersects
a,(¢y) = a(r)exp(jiu); (5) the error is found by using
Eq. (32). Steps 2-5 are repeated for all values of ;.
From these results the values of ¢; and ¢, are deter-
mined that produce the minimum error for the encoding
of the value a,. Step 4 requires the solution of the non-
linear equation as(iy) = a; + x(a, — a;). Separately
equating the real and imaginary parts of this expression
gives two equations in the two unknowns x and 5.
These values were solved by using the “find” function in
the software package MATHCAD (Mathsoft Inc., Cam-
bridge, Mass. 02142).

The complex value a, = (0.67, 1.67) corresponds to
the intersection of the three thin line segments in Fig. 7.
The minimum-error encoding formula corresponds to a
line segment that contains a, and the sample point at
(0.5, 0). In fact, for this particular coupling characteris-
tic, one of the two sample points is usually (0.5, 0). Inall
other cases one of the two points is (1, 2#). This corre-
sponds to the encoding of those effective amplitudes that
exceed a (i) (i.e., for effective phase between 0 and ap-
proximately 0.327). This procedure can be summarized
in the following way: Pick the amplitude of one of the
sample points to be as small as possible. This is true
even if one sample point is (1, 27). In this case the other
sample point is the minimum possible.

Comparison of minimum-error and amplitude-
compensated encoding algorithms. The encoding error
produced by the example 3 algorithm can be evaluated by
solving Eq. (24) for the spread » for which a,
= (ag, ). Then the complex values on the modulation
characteristic, a; and a,, are calculated for the phases
o = v/2. Using these two sample values in Eq. (32)
gives the encoding error ¢, for encoding the value a, by
the compensation method. These errors are compared
with minimum encoding error €y, in Table 1 for selected
values of a,. Errors up to three times larger than the
minimum error are produced by the compensation
method. However, individual errors can be much closer




Robert W. Cohn

in value to the minimum error. For an effective ampli-
tude of 0.68 in the table, the compensated encoding has a
spread of » = 7#/10. Since one sample point is (1, 2), the
compensated encoding coincides with the minimum-error
encoding. The additional error produced by the compen-
sation method can be appreciated by considering the er-
rors produced for ay = 0. The phase of a desired complex
value need not be specified for zero-valued amplitudes,
but, depending on the specification of ¢, the encoding er-
ror varies from 0.875 for the sampling points (0.5, 0) and
(0.75, m) to 0.75 for the sampling points (0.75, 7) and
a, 2m).

The search procedure used to identify the minimum en-
coding error has also been used to identify the maximum
possible encoding error €y,;. The maximum-error solu-
tion usually corresponds to one of the sample points being
(1, 2m). For the case ay = 0.68 in Table 1, for which the
minimum-error solution uses the (1,2#) sample, the
maximum-error solution is found by selecting the smaller
of the two sample points to have the smallest amplitude
possible. This corresponds to the line segment intersect-
ing a, that is tangent to the modulation characteristic.
In Table 1 the encoding error for the compensated algo-
rithm, €., approaches the upper limit ey, closely for i,
= 1.67 and 1.75%. The solution for the compensated en-
coding of these two points includes one sample point that
is close to (1, 27), whereas a sample point at (0.5, 0) is
needed for minimum error.

For comparison I also include in Table 1 the encoding
errors for a phase-only SLM. As with phase-only modu-
lation in general, for pseudorandom phase-only modula-
tions there is a conservation of the energy diffracted from
the modulation to the Fraunhofer plane.! For this rea-
son the encoding error for phase-only modulation is €,
= 1 — ay?. (This result is independent of the particular
phase-only pseudorandom-encoding algorithm. Also note
that the square root of this error is identical to the mag-
nitude of the error vector of the parity sequence method.®)
Since the phase-only characteristic has a greater radius
than that of the coupled curve, it is not surprising that
the errors for the phase-only characteristic are larger
than those for e, .

Consideration of other coupling functions. It is not im-
mediately obvious if the minimum-error solution requires
that one of the two sample points have minimum radius
for other types of curves. Various types of coupling func-
tions have been examined numerically to determine if the
result can be generalized and if there are counterex-

Table 1. Encoding Errors for Minimum-Error,
Compensated, Maximum-Error, and Phase-only
Pseudorandom Encoding for Various a,

ap Yo/ vim €min € €max €0
0.80 1.75 0.35 0.09 0.24 0.24 0.36
0.68 0.05 0.10 0.06 0.06 0.18 0.54
0.67 1.60 0.46 0.19 0.36 0.37 0.55
0.60 0.75 0.32 0.10 0.11 0.15 0.64
0.40 0.00 0.62 0.12 0.37 0.70 0.84
0.05 0.75 0.95 0.38 0.46 0.73 1.00
0.00 — 1.00 3/8 3/8 to 3/4 3/4 1.00
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amples. The solution has been examined for amplitude
coupling in the form of a power law a(¢) = o[ Y/(2m)T
+ B,wherea+ B=1and 0 < ¢ < 27w. The exponent
r was varied between 0.2 and 3. Although this testing is
not exhaustive, for each desired complex value the
minimum-error encoding once again used the sample
point at either (B, 0) or (1, 27). For each of these cou-
pling functions, the amplitude increases monotonically
with phase.

In search of a counterexample, other coupling functions
have been examined that are nonmonotonic. For simula-
tions using these functions, neither of the two sample
points is minimum in amplitude for minimum-error en-
coding. One of these coupling functions that provide a
counterexample is a(y¥) = 0.75 + 0.25cos .  Another
function is that for the phase-only characteristic. It has
the property that every pair of sample points that are col-
linear with the desired complex value produce the identi-
cal amount of encoding error. The geometry is un-
changed by a shift of the origin, so that the encoding error
as calculated by Eq. (32) remains constant as long as the
modulation characteristic is perfectly circular on the com-
plex plane.

Summary. This section has described a method for en-
coding based on minimizing pseudorandom encoding er-
ror. The method has been specialized so that only bino-
mial distributions are admitted. An even more involved
problem would be the search for an arbitrary density
function that minimizes the encoding error. This possi-
bility has yet to be considered. Also, the higher-order
moments (e.g., the variance of the intensity®) provide ad-
ditional information on the noise and the errors in the dif-
fraction pattern. This information could be used to de-
cide between two encodings that generate the same
amount of noise € (as is the case for phase-only and other
circular characteristics). Although much more analysis
is possible, the analysis procedure presented here does
permit comparisons of encoding error for the compensated
algorithms with the minimum- and maximum-error lim-
its. The compensation method, although it does produce
more error, is more conducive to quick implementation.
Furthermore, for modulation characteristics that are
closer to circular, the amount of error produced by the
amplitude compensation method would approach the
minimum error even more closely.

8. DEMONSTRATIONS OF THE ENCODING
ALGORITHMS

A better appreciation of the usefulness and the perfor-
mance of the pseudorandom-encoding algorithms for
coupled modulators can be gained by comparing their
ability to encode a desired complex-valued function. This
is done by way of computer simulation. The identical de-
sired function is used for each encoding algorithm. The
diffraction pattern of the desired function and of each en-
coded function is simulated and plotted on comparable
scales. Three of the encodings use algorithms for coupled
SLM’s that are developed in this paper, and two encod-
ings are previous methods that are included for compari-
son.
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Procedure. For this study the SLM is assumed to be
composed of 128 X 128 pixels. It is modeled as an array
of 128 X 128 samples. The desired fully complex func-
tion is formed by adding together subarrays of sizes 128
X 82,64 X 64,and 32 X 128. Each subarray has ampli-
tude that is constant and phase that varies linearly with
position. Thus the Fourier transform of each subarray
would be a two-dimensional sinc function centered at a
point that is determined by the slope of the phase. The
phase slopes are chosen so that diffracted spots will be
centered on the horizontal axis. The subarrays are posi-
tioned so that only two subarrays overlap at any position
in the modulator plane. This gives the resulting ampli-

® ®)

Fig. 8. Plots of the desired fully complex function a , used in the
simulation study: (a) desired magnitudes a, as they would ap-
pear on the 128 X 128-pixel SLM, (b) desired values a , shown on
the complex plane. Each value shown occurs numerous times.
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tude modulation in Fig. 8(a) the appearance of vertical in-
terference fringes. The fringe spacing varies, depending
on which pair of subarrays overlap. It is desired that
each spot have an identical peak intensity, and for this
reason the magnitudes of each subarray are identical.
This leads to modulation amplitudes that vary from 0 to
v. [Also note that for y = 1 the diffraction efficiency,
with the use of Eq. (6), is 0.5.]

The resulting diffraction pattern is simulated by plac-
ing the 128 X 128 array of complex numbers in a 512
X 512 array of zeros and then performing the fast Fou-
rier transform. A gray-scale rendition of intensity is
shown in Fig. 9(a) for the central 65 X 512 samples of the
fast Fourier transform, and an intensity plot is shown in
Fig. 10(a) for the central 1 X 512 samples. The gray-
scale rendition is saturated so that fully white corre-
sponds to a level that is 15% of the peak intensity. Al-
though the Fourier transform of each of the subarraysisa
sinc function, some interference from sidelobes is also evi-
dent. Nonetheless, the eight spots are nearly identical in
intensity.

Three pseudorandom-encoding algorithms for coupled
SLM’s are implemented by assuming the same two SLM
coupling characteristics as those used in Sections 5-7.
The first algorithm is the example 2 algorithm with use of
the 4 coupling characteristic (the solid curves in Fig. 1).
The magnitude of the desired function is scaled so that
vy = 0.25. The second algorithm is the example 3 algo-
rithm with use of the 27 coupling characteristic (the dot-
ted curves in Fig. 1). The algorithm is augmented with
method 3 to handle values that lie in the unrealizable

Fig. 9. Gray-scale plots of the intensity of the diffraction patterns resulting from (a) the desired fully complex function and (b)-(f) the
various algorithms b—f. The algorithms are described in Section 8. Each image shows the central 65 X 512 samples of the simulated
512 X 512-sample diffraction pattern. In each image a fully white gray scale corresponds to an intensity that is 15% of the maximum
spot intensity plus the minimum spot intensity divided by 2 [(max + min)/2].




Robert W. Cohn

(b)

(©)

Fig. 10. Cross sections of the diffraction patterns resulting from
(a) the desired function and (b)—(f) the various algorithms b-f.
Each cross section is the central 1 X 512 samples of the simu-
lated 512 X 512-sample diffraction pattern. Each trace is nor-
malized so that the maximum spot intensity plus the minimum
spot intensity divided by 2 [(max + min)/2] is of identical length
on the vertical scale of each plot.

peninsular region of Fig. 5. The two possible values, a,
and @, , that are used in Eq. (27) are chosen to be the up-
per and lower boundaries of the peninsula for a specified
value of ¢/,. One or the other of these two boundary val-
ues (depending on the value of a random number and d)
is then encoded by example 3. The desired function is
scaled so that y = 0.55. The third algorithm is the
minimume-error encoding for binomially selecting one of
two possible points. This algorithm is equivalent to
method 4 with use of the minimum-error selection criteria
given in Section 7. The amplitude coupling is also the 27
coupling characteristic (dotted curves of Fig. 1), and the
scaling is ¥ = 0.49. For convenience I will refer to these
three algorithms as ¢, d, and e, respectively, which are the
same labels as those used for the corresponding results in
Figs. 9 and 10.

There are two other algorithms that have been imple-
mented for purposes of comparison. These are a deter-
ministic algorithm that is somewhat similar to the phase-
only filter, except that it is applied to the 2=
characteristic of Fig. 1, and a pseudorandom encoding for
a phase-only characteristic. These algorithms will be re-
ferred to as b and f. As with the phase-only algorithm,
the nonrandom algorithm sets the actual phase ¢ to the
desired phase ¢,. Thus the implemented modulation is
a = a(y,)exp(ji). The pseudorandom phase-only en-
coding is identical to example 3 with the coupling charac-
teristic set to a(y) = 1 for all values of . The relation-
ship between effective amplitude and spread [Eq. (24)] is
plotted in Fig. 4 (thin solid curve). The spread is directly
calculated as v = arccos(2a,). For the phase-only algo-
rithm the desired complex function is scaled so that
y=1
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After each of the five encodings is performed, the data
are zero padded and fast Fourier transformed by the iden-
tical procedure used for the desired fully complex func-
tion. Each gray-scale image in Fig. 9 is saturated to ap-
proximately 15% of its peak intensity. The maximum
(max) and minimum (min) intensities of the eight peaks
in the corresponding trace in Fig. 10 are found. Then the
peak gray scale for the gray-scale image in Fig. 9 is set to
15% of (max + min)/2. Figure 10 is plotted so that the
vertical scale is identical for the quantity (max
+ min)/2. The peak fluctuations are used to calculate a
uniformity measure as well. This is » = (max
+ min)/(2 X max).

A few comments on the numerical implementation of
the algorithms may be of interest. The algorithms are all
implemented by using MATHCAD whiteboarding software
running on a 100-MHz Pentium personal computer with
32 Mbytes of memory and a Windows 95 operating sys-
tem. The time required to encode the 1282 desired com-
plex values takes of the order of 2 s for algorithms b, ¢,
and f and of the order of 3 min for algorithms d and e. No
special effort has been made to optimize the implementa-
tions for computational speed or real-time implementa-
tion. Furthermore, since MATHCAD is an interpreter and
a graphical interface, rather than a compiled language,
the speeds reported here are not representative of what is
possible with compiled code. To ensure consistency in
comparing the various encedings, the identical 1282 ran-
dom numbers are used for each type of encoding. Algo-
rithms b and f are directly implemented with standard
functions, so no further discussion of their implementa-
tion is given.

Algorithm ¢ requires that the amplitude of Eq. (21) be
inverted to specify v. This can be done by using a one-
dimensional nonlinear equation solver or by developing a
lookup table. Based on the smoothness of the curves in
Fig. 3, the latter option has been pursued. A two-
dimensional spline-fitting function is available in
MATHCAD. It requires that the sample coordinates be
rectangularly spaced in two dimensions. The way that
this condition has been obtained is the following: (1) For
a fixed value of desired phase i, , calculate the magnitude
of Eq. (21) divided by a(y,) for 11 values of v between 0
and 27. This produces values of x = a./a(y,) that are
normalized between 0 and 1. (2) This calculation is per-
formed for 11 values of ¢, between — 7 and 7 to yield
121 values. (3) The 11 pairs of values for each fixed
value of i, are fitted with a one-dimensional spline to pro-
duce 11 spline fits of v as a function of x. (4) Each spline
fit is then interpolated at identical values of x. This pro-
duces 121 values of v on rectangular coordinates of x and
.. (5) These values are then fitted by a two-
dimensional spline. The appropriate value of v is then
found by supplying values of ¢, and x = a./a(y,) to the
MATHCAD two-dimensional spline interpolation routine.
Such routines actually use a lookup table to localize the
value of the function followed by interpolation to refine
the accuracy of the value.

The development of a two-dimensional spline fit proved
too difficult to apply to algorithm d. One problem is that
desired/effective amplitude a. is not always a monotonic
function of v (see Fig. 4). Thus it is not possible to ex-
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change the ordinate and the abscissa, and then spline-fit
v against a, over the full 7 range. A nonlinear equation
solver has also been tried, but the possibility of two solu-
tions for v and the sharp discontinuity in the curves fre-
quently lead to nonconvergence to a solution. A method
that always seems to produce a solution is to limit the fit
(and subsequently to interpolate) only over ranges for
which e, is a monotonic function of ». These various
ranges have been evaluated in Section 5 and are identi-
fied in Fig. 5. The description of the logical selection of
the ranges is somewhat tedious. I will describe only one
case for illustration. If ¢, is a fixed value between 3 7/2
and 27, a, is a monotonic function for all values of v be-
tween 0 and 2(27 — ¢,). (The maximum value of a, cor-
responds to the lower bound of the unrealizable peninsu-
lar region in Fig. 5.) A spline fit of v as a function of a,
can be made over this range. Although it is numerically
inefficient, the fit is repeated for each new value of a, as
follows: (1) For a given value of a,, the appropriate
range of v is identified; (2) 11 values of a, are calculated
over the range of v for the given value ¢, ; (3) a spline fit
of v as a function of the o, is performed; and (4) a spline
interpolation is performed to calculate the required value
of v.

For algorithm e a nonlinear equation solver is em-
ployed to find the two sample points that pseudorandom-
encode the desired complex value with a minimum error.
The result from Section 7 is used that one of the two
sample points of the minimum-error solution is usually
(0.5, 0). By limiting the scale factor so that yis less than
0.5 (as has been done), it becomes possible to avoid con-
sideration of the other possibility [that one sample point
can sometimes be (1, 0)] and always use (0.5, 0). Under
this condition the equation solver converges for all 1282
complex values. For y of 0.5 or somewhat greater, the
equation solver did not always converge. The solution is
essentially identical to the result of the procedure given
in Section 7. Given the points a, and (0.5, 0), the solver
finds the intersection point of the common line through
these two points and the modulation characteristic.

Discussion of results. Figures 9 and 10 show that all
five methods produce diffraction patterns that are similar
to the desired diffraction pattern. Algorithm b, the de-
terministic algorithm, is the least uniform, having a uni-
formity of u = 0.76. The pseudorandom algorithms ¢, d,
e, and f have greater uniformities, of u = 0.82, 0.88, 0.92,
and 0.88, respectively. The uniformity of algorithm e
may be overstated, since the peak intensity of its diffrac-
tion pattern (unlike the other curves) is on a line other
than the one plotted in Fig. 10. If this value had been
used instead, then u would be calculated to be 0.89. The
key result to note is that the pseudorandom algorithms
lead to more uniform or accurate reconstructions of the
desired function than does the deterministic method.
This correspondence between pseudorandom and nonran-
dom methods has been seen to a greater'” or lesser’* de-
gree depending on the specific functions that are being en-
coded. A second observation is that, of the
pseudorandom encodings c—e, ¢, which uses a low value of
v, is much less uniform than d and e, which use larger
values of ¥.

The algorithms are also compared on the basis of back-
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ground noise. Algorithm b generates more intense noise
than algorithms d and e and levels that are comparable
with those of algorithm ¢. However, away from this axis
the noise for algorithm b is substantially weaker than
that for any of the other algorithms. More severe back-
ground noise has been noted in Ref 10 for two-
dimensional spot arrays produced by deterministic encod-
ing. In the pseudorandom algorithms the background
noise of algorithm c, as shown in Fig. 9, is much lower
than that for algorithms d and e. Algorithm f has even
lower levels of background noise. The background noise
in algorithms c—f has the appearance of speckle, as ex-
pected. The higher levels of speckle noise in algorithm ¢
are due to the small value of y, which leads to a signifi-
cant number of large phase spreads in the design algo-
rithm.

The most pleasing result of this simulation study is
that algorithms d and e, which are applied to SLM’s with
significant degrees of amplitude coupling, perform nearly
as well as pseudorandom encoding (algorithm f) on phase-
only SLM’s. This result shows that pseudorandom en-
coding is of more than mathematical interest and that it
has its uses in control of today’s SLM’s.

9. SUMMARY AND CONCLUDING
REMARKS

The concept of extending pseudorandom encoding from
phase-only to amplitude-coupled phase modulators has
been explored. Including amplitude compensation in the
probability density function has been used to derive solu-
tions over a continuous range of effective amplitudes for a
given value of effective phase. The encoding formulas
found are only slightly more involved than those previ-
ously found for phase-only modulators. The example 3
algorithm, which uses the binomial distribution, is useful
in that it is adaptable to a wide variety of amplitude-
coupling characteristics. In developing an encoding algo-
rithm, it is necessary to determine the range of values
that can be encoded. Modifications (e.g., blending of mul-
tiple encoding algorithms) that extend this range can lead
to improved performance. The maximum range that can
be encoded by all possible pseudorandom algorithms has
been identified as a convex region that is bounded (in
part) by the modulation characteristic. This region has
been identified by use of the properties of the binomial
distribution. This analysis with the binomial has also
been used to illustrate how various distributions can en-
code the same value, though with differing levels of error.
The topics covered in this paper provide a framework for
the development of pseudorandom-encoding algorithms
for various coupled modulators.

Compared with previous encoding algorithms, pseudo-
random encoding is novel in that it permits the direct en-
coding of complex-valued information to one pixel at a
time with only a limited consideration of the settings of
neighboring pixels. This has great utility for program-
ming SLM’s with fairly arbitrary complex-valued func-
tions in real time. The idea that a limited set of modu-
lation values can represent a continuum on the complex
plane is in some sense parallel to Shannon’s concepts on
communication in the presence of noise.’® In Shannon’s
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theory the information content of a signal space is deter-
mined by the dimensionality of the signal space (i.e., the
number of ways that a signal can be represented) divided
by the volume occupied in this space by noise. In optical
processing, the modulation characteristic of SLM’s limits
the area of the complex-valued space that can be ad-
dressed. With pseudorandom encoding, a continuum of
the complex space can be addressed, but, as a result,
white noise is generated. The proposed improvements
involving the blending of various pseudorandom and
other algorithms appear to be aimed at further increasing
the available signal space.
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threshold.!=3 The realization of these properties depends, to
a great extent, on the ability to fabricate quality surfaces for
these crystals. The focus of this note is the precise hand pol-
ishing of these crystals .

Stain-free surfaces are the key to realizing the reported high-
surface damage values of these materials.]: 4 Reported here is
a method for producing surfaces for BBO and LBO having
surface figure of Yeth wave or better (at 633 nm), parallelism
of less than 1 arc s, surface roughness of 10 A RMS or less,
and a starch and dig standard of at least 10-5 for crystals as
large as 53 53 10 mm3. These surfaces were generated
using hand polishing as might be done for small quantities
while conserving the scarce and expensive BBO and LBO
materials. The following procedure given below takes
between five and seven hours to complete.

Both BBO and LBO are hygroscopic and soft. Rubber
surgical gloves are necessary when handling the crystals to
prevent staining from hands. Potassium dihydrogen phos-
phate (KDP), is used as the blocking material because it is
relatively inexpensive and has about the same hygroscopic
susceptibility and softness as BBO and LBO. Rectangles of
KDP are prepared to surround the BBO or LBO crystal. By
having the KDP pieces all the same thickness, only slightly
thicker than the BBO and LBO, grinding time can be saved.
This thickness condition eliminates grinding the BBO and
LBO and minimizes possible subsurface damage in these
crystals. The resulting configuration is a square BBO or LBO
crystal bordered by the KDP pieces. The KDP-BBO or LBO
square is about 1.5 in. on a side. A low melting wax such as
blanchard wax is used to glue these crystals to a 2" diameter
pyrex or glass work piece. It is important that this gluing
step be done in an oven rather than on a hot plate to avoid
air currents that could cause crystal cracking.

The lapping is done using WCA-9T corundum grinding
compound lubricated with ethylene glycol. Avoiding larger
size grit minimizes subsurface damage. Grinding compound
finer than WCA-9T appears to cause minimal removal while
producing a large number of scratches. Grinding is followed
by rough polishing using 3-pm diamond dust in silicone oil
on a Pellon pad lap. For this step, all the gray is removed and
the surface is 1 or 2 rings convex (at 633 nm). The final pol-
ish is done using a convex pressed pitch polisher (73 Gugolz,
6" diameter) and approximately 6 mg of !/,-um diamond
dust using ethylene glycol as the lubricant. For each opera-
tion a slowly rotating lap (5-10 rpm) is used while holding
the work piece by hand.

The key step is the protection of the finished first sur-
face during the removal of the BBO and LBO crystals from
the work piece, and while polishing the second surface. The
blanchard wax is dissolved using trichloroethylene (TCE) in
a warm oven, Wax residue is removed by wiping with a lens
tissue or Q-Tip and TCE. Surface degradation will occur
with extended wiping or allowing the solvent to dry on the
surface. Should this happen hand-held touch up is required.
We do not know of any adhesive that will not stain the pol-
ished surface of KDP, BBO, or LBO.

To polish the second surface, while preserving the fin-
ished first surface, requires hand-work on the unmounted
BBO or LBO sample, again emphasizing rubber gloves to

prevent surface degradation. By hand, the second surface is
ground and polished the same as the first. Parallelism is the
added requirement for this step. Parallelism is verified first
using an autocollimator and then an interferometer as the
surfaces approach parallelism. Sometimes it is necessary to
touch up the first surface as the final step.

The procedure given here results in negligible subsur-
face damage as indicated by the high value of threshold for
laser damage. It is believed that the extensive polishing and
minimal grinding contributes little to subsurface damage
that may be the seed for the initiation of laser damage.
Working in a “clean room” or glove box atmosphere with
reduced humidity can help to reduce the water vapor pro-
duced stains. These controlled conditions were not available
at the time.
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Frequency Swept Measurements of Coherent
Diffraction Patterns

Mearkus Duelli, David L. Hill, and Robert W. Cohn, The
ElectroOptics Research Institute, Univ. of Louisville,
Louisville, Ky.

Abstract

Interference fringes arising from multiple reflections can sig-
nificantly alter the diffraction patterns of diffractive optical
elements. One way to reduce interference effects is by time-
integrating the diffraction pattern while frequency sweeping
the laser source. This method is especially useful when it is
not possible to remove the cover glass from the observation
camera.

The use of charge coupled device (CCD) cameras in optical
systems, together with a laser light source, is widely applied
to a variety of measurements. But coherent imaging can
introduce severe alterations of the detected signal due to the
unwanted interference of multiple reflections of the beam.
These reflections that arise from various optical surfaces in
the systemn, including the cover glass of the CCD chip, are
difficult to completely eliminate. A classic solution is to use a
spatially coherent broadband source.! An alternate
approach, described in Reference 1, adds together a set of
images, each formed with a different wavelength of spatially
coherent narrowband light. While the emphasis of the earli-
er work was to reduce speckle, the procedure evidently
reduces interference fringes as well (see Fig. 21.15 in Ref. 1).
Today, with the availability of tunable laser diodes and CCD
cameras, it appears possible to perform wavelength averag-
ing in real-time. We will demonstrate this technique and
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report on the im-
provement in the n
accuracy and
repeatability of the
diffraction patterns
produced by a set of
diffractive optical
elements (DOEs).

Figure 1 illus-
trates a typical
source of interfer-
ence from Fresnel
reflections in a glass
plate. A fringe pat-
tern is usually observed across the plate due to (even a
slight) lack of parallelism between the two surfaces. The
fringe pattern can be averaged out by continuously varying,
by at least 2w the phase difference between the transmitted
beam and the doubly reflected beam, and integrating the
intensity pattern during the sweep time. A 27 phase change
is achieved with a sweep range of

AL =2A%/2nd = (V) (c/ 2nd) 1)

—

air glass air

Figure 1. Multiple reflection between two
interfaces.

where A is the source wavelength, dis the separation
between the two reflecting surfaces, and n is the refractive
index (which is assumed to be constant with wavelength). A
wavelength change of AA = 0.25 nm will produce a 27 shift
for A = 860 nm, n = 1.5, and a thickness d = 1 mm, a typical
thickness for cover glass and planar DOEs. The second
equality is written in terms of the source frequency v and
the speed of light ¢. Writing equation 2 this way identifies
the frequency change Av = ¢/2nd as the free spectral range of
a Fabry Perot etalon.?

In a preliminary experiment, a diode laser of nominal
wavelength A = 860 nm is used. A collimated beam is passed
through a 3-mm microscope slide and the 1-mm cover glass
of the observation camera (a cooled CCD camera with vari-
able time integration) and is recorded by the camera. The
observed intensity distribution is shown in Figure 2a. The
larger period fringes are from the microscope slide and the
smaller period fringes are from the cover glass. The temper-
ature of the laser head, and thus
the frequency of the emitted
light, can be controlled by an
external voltage. An input volt-
age between 1-4 V varies the
temperature between 10-40°C.
By supplying a time varying
voltage the temperature changes
accordingly. A low frequency
step function (period T= 60s)
as the control voltage is used.
This results in a temperature
change that varies linearly with
time between 24°-37°. As the
temperature changes the fringe
pattern is observed to translate.
By exposing the CCD during
one period of the fringe transla-

tion the interference pattern is averaged out. In our set-up
one period of fringe translation, corresponding to the
desired 0.25-nm wavelength change, occurres in 3 s. The
pattern resulting after a 3 s exposure is shown in Figure 2b.
While the fringes are averaged out, the frequency sweep has
no visible influence on the diffraction pattern from the dust
particles on the glass plate.

The swept frequency method is used to characterize a
set of identically designed diffractive optical elements. These
devices, when illuminated with collimated light, are
designed to produce 64 spots of nearly equal intensity in the
Fourier plane. The uniformity (defined as the standard devi-
ation of the intensity of the spots) of the designed spot
array, is calculated to be 7%. The DOEs are 300 3 300 pixel
phase elements with each pixel set to one of eight possible
phase levels. Four of the seven DOE:s are anti-reflection
coated on the backside of the glass substrate. In our mea-
surements the DOE is illuminated with a collimated beamn
and the diffracted light is focused with a lens onto the CCD
camera. The diffraction pattern is recorded on the CCD
camera with and without frequency sweeping. With no fre-
quency sweeping an average uniformity of 12.1% with a
standard deviation of 1.5% is measured. There is no appre-
ciable difference between measurements of antireflection
and non-antireflection coated devices. This indicates that
the disturbing reflections mainly originate from the cover
glass of the CCD camera. With frequency sweeping the aver-
age measured uniformity of the seven devices is reduced to
7.9% with a standard deviation of 0.8%. The swept frequen-
cy method improves the repeatability of the uniformity
measurement. In addition, the results compare more favor-
ably with the theoretical levels. Other measurements includ-
ing signal-to-peak background ratio and diffraction efficien-
cy compare well with theory, though these measurements
are not as sensitive to reflections as is uniformity.

The method is valid as long as the sweep range A\ does
not introduce severe wavelength dispersion of the diffrac-
tion pattern. This is true as long as

AN << wif 2

where fis the highest spatial frequency of interest in the dif-

Figure 2. Image of laser ilumination through a microscope slide and the cover glass of the CCD. Image (a)
without and (b) with frequency sweep.




fraction pattern and wis the resolvable width of the optical
system. For example, the diffraction pattern of an optical sys-
tem that has a circular aperture is an Airy pattern of angular
width 6, = tan! (w/2) = 1.22\/Iwhere Iis the diameter of the
aperture and z is the distance from the aperture. For the mea-
sured diffractive optic reported above the aperture is 4 mm
and 6, = 0.015°. Furthermore, through numerical integration
of the Airy intensity pattern over the sweep range A\ = 0.25
nm the wavelength dispersion introduces less than 5% reduc-
tion in intensity for angles less than 26.9°. In the measure-
ments reported, dispersion is negligible since the highest fre-
quency spot from the array generator is at an angle of 0.85°.
In conclusion, the method of time averaging while fre-
quency sweeping the source can be used to suppress interfer-
ence fringes arising from multiple reflections. This method
can more accurately measure the performance of diffractive
optical elements. It is worth noting that by sweeping a laser
in under 1/30 s it would be possible to eliminate multiple
reflections as observed on a live video camera. This speed was

not possible with temperature tuning, nor was it possible to
tune the laser over an adequately large range by adjusting the
laser current. However, we have reviewed the specifications
for several commercially available, external cavity laser
diodes, and find that with the fastest sweep rates (6-10 nm/s)
fringe suppression can be observed with a live video camera.
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High Resolution Moiré Photography:
Extension to Variable Sensitivity
Displacement Measurement and to the
Determination of Direct Strains

Pramod K. Rastogi, Swiss Federal Institute of Technology,
Stress Analysis Laboratory, Lausanne, Switzerland.

Abstract

A method for obtaining a direct full field display of in-plane
strain contours is demonstrated. On another front, the paper
proposes the basis of a multi-sensitivity high resolution
moiré photography system for in-plane displacement mea-
surement.

High resolution moiré photography!~2 is an important tech-
nique for the measurement of in-plane displacements of
deformed objects. The method has many desirable features
such as white-light object illumination, low sensitivity,
whole field mapping of in-plane displacements, and the abil-
ity to be applied to specimens of largely varying sizes. The
method uses the unique imaging properties of a lens covered
with a mask containing two parallel slits. A so-masked lens

white light

surface of the test
structure with a grid
pattern fixed on it

multi-slotted
mask

Figure 1. Schematic of high resolution moiré shearography for obtain-
ing in-plane strain contours.

H(f)

Ll

~fix fix

a) b)
Figure 2. (a) Schematic of the two four-slot pupil arrangements cover-
ing the splitlens device and (b) its corresponding monochromatic opti-
cal transfer function along the x direction; b shows 2x magnified view.

systemn is used to image a periodic pattern, fixed on the
object surface, onto a high resolution photographic film.
This type of system has two main advantages. First, it serves
to enhance the resolution over a narrow band of spatial fre-
quencies in a direction parallel to the line joining the center
of the two slits. Second, it increases the depth of focus by a
significant amount.

In this paper, a novel scheme that combines the princi-
ples of optical shearing and a slotted mask arrangement to
obtain directly the whole-field mapping of in-plane strains
of a deformed object is introduced. The second aim of the
paper is to extend the method’s capability to include multi-
ple frequency channels. The multi-frequency transmission is
made possible by the use of a novel aperture masking
arrangement, which during reconstruction permits observa-
tion in all bands. An immediate fall out of this proposal is
the development of a multi-sensitivity high resolution moiré
photography system for displacement measurement.

Strain measurement

The specimen under investigation is imaged by an image-
shearing device on to high-resolution photographic film (see
Fig. 1). The image-shearing device consists of a split lens
assembly with each half of the assembly covered by a mask
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Fully complex diffractive optics by means
of patterned diffuser arrays: encoding
concept and implications for fabrication
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Arbitrary complex-valued functions can be implemented as arrays of individually specified diffusers. For any
diffuser, only average step height and vertical roughness are needed to control phase and amplitude. This
modulation concept suggests potentially low-cost fabrication methods in which desired topographies are pat-
terned by exposing photoresist with partially developed speckle patterns. Analyses and experimental dem-
onstrations that illustrate the modulation concept and aspects of the fabrication method are presented, with
particular emphasis on limitations of complex recording set by various photoresist and exposure properties.
Applications of diffuser array concepts to spatial light modulators and to gray-scale lithographic printing of
micro-optics are also mentioned. © 1997 Optical Society of America [S0740-3232(97)02305-3]

Key words: signal synthesis, diffractive optics, computer-generated holography, laser speckle, diffusers,

phased arrays, gray-scale lithography, statistical optics.

1. INTRODUCTION

The properties of random phase have been widely applied
to analyze the scattering of monochromatic light from
rough surfaces.? The inverse problem of specifying the
statistical properties of phase-only structures so as to ob-
tain desired far-field diffraction patterns has received
little attention. Recently, Cohn and Liang introduced a
point-oriented encoding method, referred to as pseudo-
random phase-only encoding, in which the phase modula-
tion ¥ (x, y) is treated as a nonstationary process in the
coordinates x and y.3 Specifically, the statistics at any
point of the modulation are selected so that the statistical
average of the random phasor exp(jy) equals the desired
fully complex modulation a. exp(jy,) at that same point.
The far-field diffraction pattern from this random phase
modulation approximates the desired diffraction pattern
in the sense of the law of large numbers; that is, as a
number of repeated statistical trials, N, is increased, the
resulting diffraction pattern more accurately corresponds
to its expected value or ensemble average.! The averag-
ing mechanism here is the superposition in the far field
of wave fronts that originate from points across the
modulation.

To our knowledge, there is no prior art in computer-
generated holography in which statistical properties have
been varied with position to achieve design objectives.
There are many applications in which pseudorandom
phase codes are widely used in optical information pro-
cessing, holography, and optical memory storage; how-
ever, these approaches all appear to use pseudorandom
phase sequences that are stationary, as opposed to our
approach, in which the statistics are nonstationary.
Somewhat similar to pseudorandom encoding is the
Davis—Cottrell method of randomly multiplexing two (or
more) phase-only functions.’> The two individual modu-
lations are randomly interleaved. The probability of se-

lecting one or the other phase function determines the
relative strengths of the individual functions and their
diffraction patterns. The random selection is nonethe-
less a stationary process, and the method does not permit
the encoding of arbitrary complex functions.

Research on pseudorandom encoding has so far been di-
rected toward real-time programming of spatial light
modulators (SLM’s) for pattern recognition filters and to-
ward laser-beam steering and shaping operations.:i";’7 In
this study we consider the application of the encoding
concept to fixed-pattern diffractive optics. Mathemati-
cally, there is no difference between phase-only SLM’s
and phase-only diffractive optics, but there are practical
differences that suggest entirely new realizations and
methods of fabrication. These differences include the
following:

e The time available to design and fabricate a diffrac-
tive optic is much longer than that for real-time program-
ming of SLM’s.

¢ The feature size of diffractive optics (micrometer
scale) is usually much smaller than that for SLM pixels
(10 to 200 um), and the spatial bandwidth of diffractive
optics is correspondingly larger than that for SLM’s.

One implication of increased bandwidth (which is propor-
tional to the number N of independently controllable
phase-only pixels) is that the diffraction patterns from
pseudorandom encoding will more closely approximate (in
the sense of the law of large numbers) the desired diffrac-
tion pattern. But there are fabrication costs involved in
using the highest resolution. Fine features are typically
written point by point with direct-write laser-beam or
electron-beam patterning systems. Scanning of laser
beams is usually quite slow in order to minimize
vibrations.8 Electron-beam scanning can also be slow if
there are a large number of mechanical steps between
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fields. Furthermore, electron-beams are generally ex-
pensive to purchase and maintain.

These issues have led us to consider a class of design
problems in which the desired complex-valued modula-
tion @, = a, exp(ji,) has a bandwidth that is substan-
tially less than the bandwidth (i.e., the reciprocal of reso-
lution) of the diffractive optic element. When this is
true, group-oriented encoding can be used in place of
point-oriented encoding.%!® But, again, group-oriented
encoding suggests the need for higher-resolution pattern
generators. Perhaps, rather than to direct-write each re-
solvable point in sequence, a reasonable compromise for
this class of diffractive optic design problems is to pattern
the entire group in a single processing step. Optical pat-
terning of groups is reasonable given that the system pro-
vides an adequate variety of patterns and that the com-
plexity of configuring the patterns is not too great.
Furthermore, to justify using such a system in place of
current direct-write systems, increased speed and less
critical optomechanical tolerances are necessary.

In this paper we examine a concept for effectively
achieving complex modulation. It is a direct extension of
pseudorandom encoding in that any one group is an array
of random phase shifts all drawn from the same statisti-
cal distribution. We show that each group can be real-
ized as a diffuser pixel having a specified roughness and
average step height. We will refer to a diffractive optic
composed of an array of custom diffuser pixels as a pat-
terned diffuser array. We describe a fabrication proce-
dure that appears capable of the simplicity, the robust-
ness, and the speed needed to supplant electron-beam
and laser writers for fabricating group-oriented designs.
Theory, simulations, and demonstration experiments are
presented to illustrate the modulation concept and to
evaluate the practicality of the proposed patterning pro-
cedure. A major emphasis of the evaluation of the pat-
terning procedure is the nonlinear transformation of the
random statistics of the exposure pattern (typically, laser
speckle patterns) into the desired complex modulation.

2. CONCEPT: EFFECTIVE COMPLEX
MODULATION OF DIFFUSERS
AND DIFFUSER ARRAYS

The complex-modulating property of diffusers can be ap-
preciated qualitatively by considering the effect of the
surface texture of a diffuser on its far-field diffraction pat-
tern (Fig. 1). The diffraction pattern from a smooth sur-
face is a specular intensity pattern. The pattern from a
rough surface is a diffuse pattern of noise that is also re-
ferred to as a fully developed speckle pattern (only the en-
velope of diffuse scatter is illustrated in Fig. 1). The
grain size of the roughness pattern is typically much
smaller than the area of the diffuser that is illuminated;
thus the envelope of the speckle pattern is typically much
more broadly spread than the specular component. The
far-field pattern from a surface of intermediate roughness
will contain both specular and diffuse components and is
referred to as a partially developed speckle pattern.
Thus it is possible to use diffuser surface roughness to at-
tenuate the specular component. The intensity transmit-
tance could be varied from unity to practically zero.
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Fig. 1. Controlling specular intensity by varying surface rough-
ness.
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Fig. 2. Array of diffusers that produces a custom complex-
valued modulation.

Since the roughness is of a much higher spatial frequency
than that of the illumination footprint, the specular com-
ponent can be much brighter than the diffuse component,
even for large values of attenuation. This qualitative de-
scription shows the sense in which diffusers control the
amplitude of the specular component. Rather than ab-
sorbing light with a true attenuator, the unwanted light
is scattered into the diffuse component. Of course, the
phase can be changed by translating the diffuser along
the optical axis.

Our approach for encoding complex-valued designs is to
use arrays of diffusers, with each diffuser representing a
custom value of modulation (as illustrated in Fig. 2).
Nearly arbitrary diffraction patterns, limited only by
speckle noise, can be produced by superposition in the far
field of the specular components from the individual dif-
fuser pixels. A mathematical description of the complex-
modulating property of diffusers can be explained in
terms of the pseudorandom-encoding algorithm,® which is
reviewed in general terms in this section and then spe-
cialized in Section 4 to accommodate the physical con-
straints set by the fabrication process. This section also
compares, by way of example designs, the improvement
made possible by using diffuser arrays in place of indi-
vidual phase-only pixels.

A. Mathematical Description of Effective Complex
Modulation and Pseudorandom Encoding

The modulation of a plane wave reflected from a phase-
only surface is represented by the complex-valued (indi-
cated by boldface type) function a(x, y) = exp[ j¥(x, y)].
The far-field diffraction pattern of the modulation pattern
is A(fy, f,) = #lal, where #1-] is the Fourier transform
operator. Since the Fourier transform and the ensemble




1112 J. Opt. Soc. Am. A/Vol. 14, No. 5/May 1997

average are both linear, the average complex-valued far-
field pattern of a random modulation can be written as

(4) = # [{a)], (D

where (-} is the expectation operator. Under the assump-
tion that the random samples of @ are statistically inde-
pendent of position, the expectation of I, the far-field in-
tensity pattern, is

(I) = (|AI%) = KA? + (L), @)

where I(f,, f,) is a residual noise pattern that is due to
the random phasings in the far field® As long as the
noise [represented by the second term of Eq. (2)] is ad-
equately low, then Eq. (2) is approximately the magnitude
squared of Eq. (1). Thus the specular and diffuse compo-
nents of arbitrary diffraction patterns are identified with
the two terms in Eq. (2). In the average sense of Eq. (2),
any complex-valued modulation can be represented by the
random phase-only modulation a(x, y) = expl ji(x, y)]
by using the relationship

(a) = f p(Wexp(j¥)dy = a, exp(jdy), (3

where p(¢) is the probability density function (pdf) of the
phase and a,, is the resulting expected amplitude modu-
lation. We will often refer to a, as the effective ampli-
tude, ¢, as the effective phase, and a, = (a,, ¢,)
= (a) as the effective complex amplitude or modulation.

The desired modulation a,(x, y¥) is pseudorandom en-
coded by specifying a pdf p(¢) in Eq. (3) that gives a,
= a,. The actual value of phase is selected by using a
pseudorandom-number generator that has the required
density function. Amplitudes can be encoded by using
any number of pdf’s in Eq. (8). A particularly useful
family of pdf’s is the uniform family of density functions,
with spreads v e [0,27] and phase bias ¢, = ¢.
These densities, when evaluated in Eq. (3), give all values
of amplitude between 0 and 1, according to

a, = sine(v/27). “@

Thus the correct density function for encoding a particu-
lar value of a, = @, is found by inverting Eq. (4) for the
appropriate value of ». The most widely available
random-number-generator routine is uniform with a
spread of 1 and a mean of 1/2. A number selected by this
routine would be scaled by v and offset by ¢, — »/2 to
produce the actual random phase . This procedure is
applied at every coordinate point to calculate the func-
tions v(x, y) and ¢,(x, y), which in turn are used to de-
termine the analog phase-only function a(x, y)
= exp[ ji(x, y)] that represents the desired modulation
a,(x, y). Since most of our designs and analyses use dis-
cretely sampled functions, we often find it convenient to
represent our functions as an array of N samples indexed
in i (for example, »; and @;).

Other pdf’s than the uniform can be used for p(¢) in
Eq. (3). In Section 4 our fabrication approaches drive us
to consider exponentially distributed (and other) phase
statistics. These statistics raise additional challenges in
that the phase modulation range of the diffractive optic
can be many times larger than 27 for small values of ef-
fective amplitude (say, a, = 0.01 or less).
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B. Advantage of Diffuser Pixels over Single-Step

Pixels: Directionality Gain

Equation (3) describes the effective complex modulation
of a phase-only pixel, a diffuser, or arrays of either. Dif-
fusers are typically modeled as arrays of random phases
all drawn from the same random distribution. The only
mathematical difference between a single pseudorandom
phase-only pixel and a diffuser pixel is that the diffuser
represents repeated statistical trials of the single pixel.
According to the law of large numbers,? increasing the
number of random trials associated with the diffuser pixel
will make the far-field diffraction pattern more predict-
able; i.e., the specular component will be more clearly
seen over the noise for diffusers having a larger number
of phase samples.

This effect can also be interpreted as a directionality
gain of the specular component over the diffuse compo-
nent. If there are N statistically independent roughness
samples, or cells, filling an aperture, then the intensity of
the diffuse pattern will be reduced by a factor of /N over
that resulting from one roughness cell filling the aper-
ture. Since the diffraction pattern of the single rough-
ness cell is identical to the pattern of the uniformly illu-
minated aperture, then the directionality gain of specular
to diffuse is N.

To demonstrate more clearly the improvement possible
by using diffusers in place of single-phase pixels, we com-
pare the performance of encoding a specific complex-
valued function into single-phase pixzels and into diffuser
pixels. The Fourier transform of the complex function
produces an 8 X 8 array of equal-intensity spots. A
single-phase pixel is modeled as a 3 X 3 array of identical
phases, and a diffuser pixel is modeled as a3 X 3 array of
nonidentical phases. Both structures, each an array of
100 X 100 pixels, are pseudorandom encoded by using
Eq. (4) to determine the spread v; of the random distribu-
tion associated with the ith pixel. The only difference is
that for a diffuser pixel there are now nine phases, in-
stead of one phase, selected from the uniform random dis-
tribution having spread »; and phase bias ¢, ;. Another
way to describe the difference between the two modula-
tions is that the diffuser array consists of nine spatially
multiplexed single-phase pixel encodings, each encoding
performed by using a different random seed.

The resulting diffracted intensity patterns are shown
in Fig. 8. The top row of Fig. 3 shows the diffraction pat-
terns as simulated by using the fast Fourier transform,
and the bottom row shows the result for diffraction from a
Hughes birefringent liquid-crystal light valve that is pro-
grammed to approximate the desired phase modulation.
As anticipated, the photographs show that the speckle is
more broadly scattered and its intensity is reduced by us-
ing diffuser arrays.

Numerical measures of the quality of these diffractions
patterns are presented in Table 1. The nonuniformity is
defined as the standard deviation of the intensity of the
64 spots divided by their average intensity. The signal-
to-noise ratio is defined as the ratio of the average inten-
sity of the 64 spots to the average background intensity.
For the experimental measurements the background in-
tensity is calculated only in the vicinity of the spot array,
while for the simulated diffraction pattern the entire pat-
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Fig. 3. Comparison of diffraction patterns from random encod-
ing a 100 X 100 array of desired complex values to a 100
X 100 array of phase-only pixels and to a 100 X 100 array of dif-
fuser pixels. Each diffuser pixel is a 3 X 3 array of phases that
are randomly encoded to produce the same effective value of am-
plitude @, . Shown are gray-scale images of diffraction pattern
intensity for arrays of (a) phase-only pixels, theory; (b) diffuser
pixels, theory; (c) phase-only pixels, experiment; and (d) diffuser
pixels, experiment. The on-axis or dc component {upper left of
(c) and (d)] is primarily due to Fresnel reflection from the cover
glass, which has not been antireflection coated for this liquid-
crystal light valve.

Table 1. Measures of Improvement of the Spot
Array Design by Using Diffuser Pixels in Place of
Single Phase-Only Pixels

Nonuniformity (%) Signal-to-Noise Ratio

Diffuser Resolution 3 X 3 1x1 3x3 1x1

Simulation 9.9 23.6 1639 72
Experiment 21.6 29.4 35 14

tern is used. For each measure and for both simulation
and experiment, the diffuser array has noticeably better
performance.

For the experimental intensity patterns, the nonunifor-
mity for the single-phase and diffuser pixel devices was
originally measured as 36.9% and 30.4%. However, the
images indicate that the intensity gradually decreases
with distance from the optical axis. This is due to limited
resolution of the SLM (which includes rolloff in the video
output of the frame grabber and the cathode-ray tube that
is the write light source for the light valve). The values
in Table 1 for this experiment report nonuniformity with
the linear and quadratic trends in both x and y removed
(through the application of a least-squares regression).
As further evidence that the rolloff is systematic, the non-
uniformity for the theoretical images can be reduced only
approximately 2% further (than reported in Table 1) by
removing linear and quadratic trends. Even though the
experimental spot arrays are less uniform and noisier
than theory (because of loss of resolution and inexact
phase control of the SLM), the improvements made pos-
sible by using diffuser pixels are apparent. Further-
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more, applying pseudorandom encoding to nonideal de-
vices produces results that are qualitatively similar to
theory.

As an additional point of comparison, we have also cal-
culated the performance of encoding the desired complex
function a,(x, y) to 300 X 300 single-phase pixels. The
complex function is sampled with a higher resolution to
300 X 300 points instead of 100 X 100 points. The non-
uniformity, found by simulation, for this single-phase
pixel device is 6.8% as compared with 9.9% for the dif-
fuser array. It is not surprising that the performance of
the diffuser array is somewhat less than that of the 300
X 3800 pixel modulator. However, there is a practical
advantage to the diffuser in terms of simplicity of fabrica-
tion (described in Section 3). Furthermore, much im-
proved performance is possible by further increasing the
resolution of the diffusers.

C. Relationship to Prior Kinoform Design Procedures
Currently, numerically intensive global search and opti-
mization algorithms are widely used for synthesizing
modulation functions under the constraint of phase-only
(in many cases binary phase-only) modulation.'"¥5 Dj-
rect pixel-by-pixel or point-by-point encoding can be a
practical alternative. Several methods of encoding com-
plex functions onto phase-only diffractive structures were
developed shortly after the introduction of the
kinoform > The most direct is the Kirk-Jones
method, € in which a periodic carrier of spatial frequency
fo that is modulated in amplitude @ and phase ¢, is con-
verted into the phase-only function

exp[j¥(x, )]
exp{jlah(27fox) + Yo (x, )1} (5)

One specific case considered by Kirk and Jones was for
h{ - ) = cos( - ). For this case the Fourier-series expan-
sion of Eq. (5) produces a dc component of complex ampli-
tude

a(x, y)

il

a. = o, exp(j¥) = Jo(a)exp(j¥a), (6)

where Jo( @) is the zero-order Bessel function. Thus a. is
proportional to the complex amplitude of the dc or zero-
order far-field diffraction pattern. Any desired value of
amplitude a, between 1 and 0 can be implemented by in-
verting J (@) to find the appropriate value of . Similar
results can be developed for k( - ) a square-wave carrier
and also for a rectangular carrier of variable duty cycle.
From the perspective of the Kirk—Jones approach, pat-
terned diffuser arrays use a random carrier. That is to
say, rather than use a single-frequency carrier 2( - ), one
adopts a carrier that is a randomly phased combination of
a continuous range of frequencies. Whereas the tradi-
tional Kirk—Jones method scatters unwanted energy into
the off-axis harmonics at discrete frequencies, a random
carrier scatters unwanted energy uniformly (on average)
into a continuous range of frequencies. For the single-
frequency carrier approach, the unwanted harmonics are
spatially separated from the desired signal. For the
random-carrier approach, the noise and the signal occupy
the same space. However, since the noise is spread uni-
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formly over the entire observation space, the noise energy
is often low enough to ignore.

For any of these carrier-based methods, it is important
to note that the maximum useful diffraction efficiency of
a(x, y) is limited only by the efficiency of the desired com-
plex modulation a.(x, y). Thus there is no implementa-
tion loss for the on-axis diffraction order. Furthermore,
the optimization of the function e, required to meet a spe-
cific set of design criteria is decoupled from the con-
straints imposed by the phase-only implementation.
This could potentially lead to simplified and improved dif-
fractive optic design procedures. (For instance, nonitera-
tive optimal window design procedures become possible;
see Ref. 3 for a specific design of a top-hat far-field
pattern.)

3. MICROTOPOGRAPHIC PATTERNING
METHODS

A. Comparison with Prior Fabrication Methods

Kirk and Jones!® also presented a fabrication procedure
in which a photomask having a sinusoidally varying in-
tensity transmittance is placed in contact with a photo-
graphic recording medium for which thickness depends
linearly on exposure energy. The medium is exposed
with an intensity pattern proportional to the function
a(x, ¥). Then the mask is removed, and the medium is
further exposed with a second pattern proportional to
Y (x, y) = ¢lx, y) + 27 — al(x, y) that adjusts thick-
ness to produce the desired phase modulation ¢,(x, y).
[The term 27 — o compensates for the average thickness
variations intreduced by ah( - ).]

If a square-wave carrier is used instead of a sinusoid,
the photomask is much easier to produce. If a rectangu-
lar carrier is used, the duty cycle is varied. This has the
advantage that every pixel can be exposed with the same
dose, but it has the disadvantages that the photomask
must be written with extreme precision and a custom
photomask is needed for each new device design. Also,
all three deterministic carriers (sinusoidal, square, and
rectangular) require two exposures to produce a desired
complex value at a point. A single-exposure method can
be envisioned in which laser interference is used to pro-
duce sinusoidal fringes and beam balance is adjusted to
control phase bias. This pattern would be projected
through a small aperture, and the entire photographic
medium would be exposed by translating it under the ap-
erture. This method, of course, requires good fringe sta-
bility.

The Kirk—Jones approach does not seem to have been
widely used, apparently because of the requirement for
analog control of the exposure. Currently, it is most com-
mon to fabricate computer-generated diffractive optic ele-
ments as binary and m-ary phase steps. However, lately
there has been considerable progress in producing analog
phase-only relief structures. Various approaches include
projection printing and laser-beam or electron-beam di-
rect write onto photoresist.®17-?® While the current
direct-write systems accurately and precisely write topo-
graphic patterns into resist, they also are slow and expen-
sive. As a result of the increasing emphasis on and suc-
cess of custom-fabricated diffractive optics, we propose an
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alternative patterning approach; specifically, we consider
the possibility of producing patterned diffuser arrays and
the technical issues that would affect the quality of the re-
sulting diffraction patterns.

B. Proposed Patterning Method

Our goal is to develop a robust, repeatable, and easy-to-
implement patterning technique. While, in concept, we
can write one random phase at a time by direct pseudo-
random encoding [Egs. (3) and (4)], there is really no need
for this precise and detailed control. Instead, we can di-
rectly use the statistical properties of laser speckle, which
are known to be reproducible and controllable.

Figure 4(a) illustrates one basic pattern generator con-
cept. This apparatus is a type of proximity printer. An
aperture (perhaps patterned on a chrome photomask)
having the area of a diffuser pixel is kinematically sup-
ported as close to the photoresist as practical. The pho-
toresist is exposed through the aperture, and then the
substrate is translated to the next location to be exposed.
The high-spatial-frequency random carrier is a fully de-
veloped speckle pattern generated by the ground-glass
diffuser. An average intensity offset needed to produce a
phase bias can be generated by temporal averaging of
speckle patterns. This can be achieved, as illustrated in
Fig. 4(a), by spinning a ground-glass diffuser with a con-
stant angular velocity. The radial separation between
the beam and the diffuser axis determines the linear ve-
locity of the diffuser. Linear velocity together with expo-
sure time then determines the effective bias. A theory
for this is described in Section 4.

Figure 4(b) shows a modified approach in which a uni-
form intensity pattern can also be used to provide a phase
bias. Statistical properties of the intensities of coher-
ently biased speckle patterns are described in Ref. 1. We
specifically consider the case in which the bias and the
speckle pattern are mutually incoherent. For the second
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Fig. 4. Proximity exposure systems for producing complex-
valued pixels. Phase offsets produced by (a) time-averaged re-
cording of speckle patterns from a spinning diffuser and (b) add-
ing a spatially uniform exposure, which, as shown, is derived
from a single-mode optical fiber used as a point source.
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approach the uniform and speckle illumination could ob-
viously be combined with a beam splitter. However, in
order to eliminate beam-splitter loss and multiple reflec-
tions, it is possible to bring a uniform coherent illumina-
tion through a small aperture (say a fiber optic) in the dif-
fuser, as illustrated in Fig. 4(b). Mutual coherence
between the spatially uniform and nonuniform sources
_ can be achieved by rotating a polarized fiber into the
cross-polarized state or by using the fiber to introduce a
delay difference in excess of the coherence length of the
laser.

A third approach would be simply to apply appropriate
random signals to the exposure control signal on an
electron-beam or laser-beam direct-write system. The
only advantages of this technique over previous direct-
written diffractive optics are that the complexity of the
design procedure is simplified and the number of values
placed in machine memory can be greatly reduced.

C. Alternative Implementations and Applications of
Diffuser Arrays

We briefly mention two other potential applications of the
diffuser array concept. Polymer-dispersed liquid crystal
under applied voltage can be converted between isotropic
and randomly oriented states. It may be possible to de-
velop a real-time SLM in which this type of liquid-crystal
layer is cascaded with pure-phase-retarding pixels. We
present this device more as an illustration of the concept
of diffuser arrays than as a serious candidate device.
The currently prevailing view is that the development of
any tandem SLM is too costly and risky. The second ap-
plication is to use patterned diffuser arrays as gray-scale
masks in projection printers. These masks could be used
in place of true gray-scale and halftone masks that were
recently used to demonstrate projection printing of three-
dimensional  diffractive  optical  structures in
photoresist.}”"1® For either the halftone mask or the
pseudorandom patterns, grayscale is achieved by diffract-
ing light outside the aperture of the imaging lens.
Speckle will not be present in the projected image if the
source illumination is adequately incoherent. The gray-
scale effect can be easily demonstrated by placing a piece
of ground glass on the platen of an overhead projector.
The pseudorandom masks for projection printing could be
fabricated with either system proposed in Fig. 4. The re-
mainder of this paper considers technical issues associ-
ated with the patterning systems in Fig. 4.

4. TECHNICAL CONSIDERATIONS FOR
PATTERNING DIFFUSER PIXELS IN
PHOTORESIST

A. Issue 1: Proximity Recording of Laser Speckle

Projecting laser speckle through a small aperture may
unacceptably blur the exposure pattern. As an example,
consider Fig. 5, which shows how a fully developed
speckle pattern (457-nm argon-ion wavelength) diffracts
at various distances past a 100-um slit. At a distance of
100 um past the slit, the edges of the pattern are still
rather sharp, showing a transition from light to dark on
the order of 10 um. This indicates that pixels having a
large fill factor can be made by proximity exposure for
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Fig. 5. Gray-scale intensity images of speckle patterns recorded
at (a) 0 um, (b) 100 um, and (c) 500 um past a 100-um slit. The
diameter of the speckle is approximately 2.5 um. Patterns were
imaged onto a 1/3-in. (0.85-cm) CCD camera by using a 40X mi-
croscope objective approximately 160 mm from the CCD. The
images were then recorded with a video frame grabber.

reasonable (10-100-um) separations between mask and
resist. It is even feasible to maintain separations of less
than 10 um, but at minute distances there would be little
further reduction in the shadow region on account of the
resist thickness, which may be exposed to a depth of sev-
eral micrometers (described in Subsections 4.B-4.G).

As compared with recording interference fringes,
speckle requires minimal vibration isolation. For a dif-
fuser, a laser, and a CCD observation camera on a 2-in.-
(5.08-cm-) thick optical bread board supported by a wood
table, we observed that speckle patterns displayed on a
video monitor exhibited no apparent displacement for
speckle diameters larger than 2 um. Vibration was no-
ticeable for 0.6-um speckle, but no blurring was observed
for 1/30-s exposure frames recorded by using a frame
grabber. Thus it seems that it is quite practical to illu-
minate resist with 2-um speckle through an aperture in
near contact (100 um or less). For pixels of the order of
the size of current SLM pixels (12.5-100 um), the direc-
tivity gains can be 39 to 2500.

B. Issue 2: Complex Modulation for Recording
Speckle in Linear Resist

The pdf of I, , the intensity of fully developed speckle, is
known to be exponentially distributed®? and is written as

1 -1,
p(Is) = ZI_S) eXP(ZI;‘)'), ™

where (I;) is the average intensity of the speckle pattern.
Also, since speckle intensity is exponentially distributed,
(I, can be interpreted as the standard deviation of the
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speckle intensity. For a photoresist that linearly maps
exposure energy into resist thickness, ¢, the random
phase depth produced, is proportional to exposure energy
E, and intensity I, of the speckle pattern. Likewise, a
mutually incoherent and spatially uniform illumination
can be used to produce a bias phase shift ¢, so that the
total random phase shift can be expressed as ¢ = ¢
+ ¢, where i, is proportional to E;, the bias exposure.
The effective complex modulation produced by this sur-
face can be found by treating the actual phase depth ¢ as
an exponentially distributed random variable. Using the
pdf for ¢ of the form of Eq. (7) in Eq. (3) yields

explj(ys + arctan(y,))]
(@) = N . (8)

The amplitude decreases monotonically with increasing
average phase depth of the resist, (¢;) (which is also pro-
portional to average energy density of the speckle, (E)).
The phase shift that is due to speckle alone varies only
from zero to /2, but ¢, can be chosen to produce any
phase shift from zero to 2.

C. Issue 3: Selecting Resist Thickness to Ensure
Linearity

A linear resist will effectively saturate if developed
through its entire thickness down to the substrate. This
nonlinearity will change the complex modulation over
that predicted by Eq. (8). Consider that the total resist
thickness is proportional to the maximum phase shift
Uy = Uy + ¢, Where ¢, is the maximum phase shift
available for speckle recording at a given bias. The effec-
tive complex modulation for this case is found by evaluat-
ing Eq. (3) as

'ﬁms
(a) = eXP(j'/lb)Uo p(Pexp(jP)dy

+ exp(j¥ms) L p(:/;)da//}, &)

where the density function is of the exponential form in
Eq. (7). This evaluates to

_ explj(yy + arctan(yy))]

@ VL (4

_!//ms
X [1 + <‘//s>exp[j(‘/’ms - 77/2)]9XP( (llf) )}:

(10)

where the prime is used to indicate that this result is per-
turbed from the result in Eq. (8). If the saturated value
of phase ¢, is much greater than (i), the average
phase produced by a purely linear recording of speckle,
then Eq. (10) reduces to Eq. (8). Thus the second term in
braces in Eq. (10) represents the errors that are due to fi-
nite resist thickness. A minimum thickness can be se-
lected based on the minimum amplitude an; of a,
€ [amin, 1] that is practical to implement and the maxi-
mum allowable error € between Egs. (8) and (10). The
worst-case absolute error is approximately
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e(a,) ~ exp(—a,¥ms), an

where the approximation a, = |[(a)| =~ 1Ky,) for average
phase depth much greater than 1 rad has been used in
Eq. (10). The minimum total resist thickness is then pro-
portional to

U = Upp + Uns = 27 — (In egin)/apin, (12)

where €, = €(@yi) and ¥, = 27 is the maximum bias
shift required to achieve all possible phase shifts. Using
¥ as defined in Eq. (12) in relation (11) gives error as a
function of @, of

€(a,) = (€pin)%/0min, (13)

As a specific example of using these equations to select
resist thickness, consider the case for a minimum ampli-
tude of apy, = 0.025 and an absolute error of e,
= 0.0025, or a 10% relative error. With the use of Eq.
(12), the resist thickness is i, = 246 rad or 39.1 optical
wavelengths. For a reflective surface relief pattern and
an optical wavelength of 0.633 um, the resist can be as
thin as 12.3 um. Equation (13) shows that the relative
error decreases rapidly for ¢, > 0.025. For example, for
a, = 0.03 the error drops to 0.00075. Resist thickness is
then only a significant concern for very small amplitudes,
i.e., those values smaller than 0.025. The thickness is
quite reasonable for standard photoresists, 2%

For comparison, the Kirk-Jones method using a sinu-
soidal carrier requires a thickness of at least

¥ = 27 + 2J9 N @ i), 14)

which follows from Egs. (5) and (6). For @y, = 0 the to-
tal thickness for a reflective surface is 0.56 um. While
the thickness of the resist for the random method is much
larger than that for the deterministic method, it should be
recognized that the selection of thickness in relation (11)
and Eq. (12) used a worst-case design. Furthermore, the
maximum average speckle exposure energy is propor-
tional to (i) ~ 1/a yy,, which corresponds to an average
depth of 2 um. Thus the comparison in terms of energy
use is more favorable. The basic conclusion for these nu-
merical examples, is that the resist can be treated as in-
finitely thick for resists six times thicker than the average
speckle depth.

The pseudorandom method can also produce an effec-
tive zero. If the magnitude of the second term in braces
in Eq. (10) is unity and ¢,,, = ¢, — ¢, and () are cho-
sen to produce a phase shift of #, then Eq. (10) is zero.
This is equivalent to having a relative error of 100% be-
tween Egs. (8) and (10). For example, for the 39.1-
wavelength-thick resist discussed above, an exposure
depth of 9.6 wavelengths or 3.05 um produces a zero ac-
cording to Eq. (10) as compared with an amplitude of a,
= 0.0165 for an infinitely thick resist [according to Eq.
(8)l. Unless the exposure system is precisely controlled
and the resist thickness is precisely known, it would ac-
tually be quite difficult to implement a true zero accu-
rately by this method. In most applications a very low
minimum effective amplitude should be adequate.
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D. Issue 4: Transformation of Speckle Statistics by
Recording in Log Nonlinear Resist

For many resists, thickness is proportional to the loga-
rithm of exposure over a wide dynamic range. For such
resists the exposure curve (depth into the resist, ¢, versus
exposure energy E) takes the form

t(E) = m In(E/E}), (15)

where E,, is a reference recording level corresponding to a
reference thickness of ¢t = 0 and m is the logarithmic
slope of the resist. The exposure curve of a 9.5-um-thick
film of resist (AZ 49083 positive) presented in Ref. 16 is
well fit over a 7-um range for a slope of m = 2.70 um and
a reference energy of E; = 75 mJ/cm?, For 5-um films of
Shipley S1650 resist, we have experimentally determined
that the slope is m = 0.823 um over a 2.6-um range
starting from a reference energy of E; = 40 md/cm?.

Using the logarithmic range of a resist leads to an ef-
fective amplitude that depends on the ratio of speckle ex-
posure to bias exposure rather than absolute intensity.
This may prove to be an advantageous feature, since it is
often easier to control ratios (using a half-wave plate and
a polarized beam splitter) than it is to control the absolute
energy individually in two independent exposures.

The effective amplitude can be found by using the fol-
lowing analysis. The logarithmic recording medium pro-
duces the total phase shift

b=t Y=« In(E, + Ey), 16)

where a is the logarithmic slope in radians (i.e., a
= 4am/\ for a reflective surface) and ¢, = a In (Ep).
This definition allows the phase shift that is due to
speckle to be written as

Us = aln(l + E /E,). amn

Using the definitions in Egs. (15) and (16), the exponen-
tial density of the form of Eq. (7), and the change of vari-
ables x = E /(E,) in Eq. (3) leads to

I

(@) = exp(js) fo exp(—x)exp[ja In(1 + yx)]dx

explj(¢p + a In y)]exp(Vy)I(1 + je, Vy),
(18)

where y = (E,)/E; and I'(a, b) is the incomplete gamma

function.?? Figure 6 shows the effective amplitude pro-
duced by exposing the S1650 and AZ4903 resists (de-
scribed above) with speckle patterns and then reflecting
633-nm light from the resulting surfaces. This corre-
sponds to using @ = 16.34 and 53.6 in the evaluation of
Eq. (18). For these values of «, the effective phase (ex-
cluding bias #;) varies by slightly more than #/2 for all
values of y. This amount of phase modulation is compa-
rable with the maximum phase shift for linear resists [see
Eq. (8) and Fig. 6].

The minimum resist thickness that effectively behaves
as infinitely thick [thus permitting the use of Eq. (18)] can
be determined by an analysis similar to that in Subsec-
tion 4.C. The maximum phase shift for which the resist
is exposed down to the substrate is once again written as
U, = ¥y + ¥, . However, the maximum phase shift that
is due to speckle is now explicitly written as ¢,
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= aln(l + E,,/E;), where E,; is the amount of energy
above bias at which the resist is completely exposed.
With these definitions the perturbed version of Eq. (18) is
written as

(@) =(a) + €

Yms

= (a) + exp(jsbb)[exp( + j¢ms)

- Jw exp[—x + ja In(1 + yx)]dx], (19)

Yms!Y

where the definition y,,, = E,,;/E; has been used and €
is the absolute error resulting from the perturbation.
Continuing with the numerical example begun in Sub-
section 4.C, a value of y is found, by using Eq. (18), for
which a, = 0.025. For the resist with the smaller loga-
rithmic slope (« = 16.34), a value of y = 2.45 is needed
to produce this amplitude. For the resist with the larger
slope, a value of y = 0.745 is needed. For an absolute er-
ror € < 0.0025, then, the ratio y,,/y = E . /{E,) needs
to be approximately 6 or greater [as found by numerical
evaluation of Eq. (19)]. This is essentially identical to
the result for linear photoresist. However, on account of
the nature of the logarithmic resists, the resist thickness
can be much less than that for linear resists. The mini-
mum thicknesses are 2.26 um for the low-a resist and
4.59 um for the high-c resist, as compared with 12.1 zan
for the linear resist. The required thickness can be ap-
preciated by comparing it with the pdf for the recorded
depths (which are proportional to the random phases
¥,). This is shown in Fig. 7. The density function for
logarithmically recorded speckle has been derived by a
standard technique for transformations of random

variables.? This function is written as
1 ¥, 1 ¥,
p(,) = a—yexp[-&— + ;[1 - exp( 7)” (20)

Note that for each curve in Fig. 7, p(0) = 0.025 = a,.
Also note that for the logarithmic resists, p(0) = A ay).
The relationship between the pdf and the effective ampli-

n
1 - 2
— log 0=16.34
== log a=53.64 i
%, eeee linear
3 K
2 a
i x
S T o
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2 ]
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2 &
(i}
0 ey - . 0

0 1 0 1
Speckle-to-bias ratio (¥)
Fig. 6. Effective amplitude a, and phase ¢, for log and linear
resists. For linear resist, which depends on absolute intensity,
the x axis is defined to be y = (¥,)/7.
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tude is approximately valid for @ = 4. For a near 5 the
pdf curve is even more sharply peaked and narrower than
that for the a@ = 16.34 curve, and the maximum resist
thickness is approximately 1 um. For @ > 53.6 the pdf
more closely approaches the exponential distribution for a
linear resist. For an appropriately chosen value of a, a
logarithmic transformation of speckle permits the use of
much thinner films than those for linear resists.

E. Issue 5: Special Case: Low-Sensitivity Log Resist
For resists having sensitivities below 4, the effective am-
plitude cannot be continuously controlled between one
and zero. This can be seen by evaluating Eq. (18). For
large values of y, the effective amplitude is well approxi-
mated as

(a) ~ explj(yp + aln YIT(1 + ja),  (18a)

where I'( - ) =T(-,0) is the gamma function. The
magnitude of relation (18a) decreases monotonically with
increasing a. For example, for a, = 0.01, 0.25, 0.5, and
0.75, a = 4, 1.62, 1.04, and 0.625, respectively. The ef-
fective amplitude as a function of y [as calculated by us-
ing Eq. (18)] can oscillate around the limiting value of ef-
fective amplitude, but this is usually a negligible amount.
The only significant undershoot is evident for a close to
a = 2.72. In this instance the effective amplitude as a
function of y dips to zero (at y = 5) before settling to an
effective amplitude of 0.058. The most important point is
that a high-contrast material (« > 4) is required in order
to produce fully complex modulation.

F. Issue 6: Time-Averaged Recording in Linear Resists
The patterning system in Fig. 4(a) uses time averaging of
speckle patterns (achieved by varying the velocity of the
spinning diffuser) to control both effective amplitude and
step height. The effect of time averaging of speckle pat-
terns is reasonably modeled as the addition of M equal-
intensity exposures of uncorrelated speckle patterns in
sequence (Ref. 1, Chap. 4). With exposure time and ex-
posure energy held constant, the parameter M is propor-
tional to the velocity of the diffuser. Alternatively, with
velocity held constant, M is proportional to exposure
time. Except for values of M close to unity, the resulting
curves for effective amplitude can be accurately interpo-
lated for continuous values of M.! Here we model time-

— log 00=16.34
-+« jog 00=5364
—= linear

o min thickness

%

probability density

0 2 4 6 8 10 12
Exposure depth (um)
Fig. 7. Probability density functions for depths of speckle re-
corded into log and linear resists. Each distribution produces
effective amplitude a, = 0.025.
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Fig. 8. Effective complex amplitude for time-averaged recording
of speckle in linear resist. Average recorded depth is propor-
tional to average exposure energy (E,). The amplitude and phase
curves use the same style for a given value of M. For M of 80,
180, and 602, the effective phase curves are nearly identical and,
for this reason, are plotted with a single style. The dots (@) in-
dicate where effective phase is 2.57.

averaged complex recording in linear resist. Then, in
Subsection 4.G we consider time averaging in nonlinear
resist.

The pdf for each exposure is Eq. (7), and the pdf for the
total exposure is the result of convolving the M identical
pdf’s.* The pdf for the phase ¢, that is due to this total
exposure is the gamma density’

)—&‘f_‘(i)ﬂ‘ (_1_‘4_'#_) @n
PW = Tany \Toy) ™\ ")

where (,)/M is proportional to the exposure energy of an
individual speckle pattern. The effective complex ampli-
tude is known to be the characteristic function of the pdf
evaluated at frequency equal to unity,? and thus the com-
plex amplitude is of the form of the Mth power of Eq. (8):

o ) e ran 22|

(@) = 73 7

(22)

The effective amplitudes and phases of Eq. (22) are
plotted in Fig. 8 against average exposure and for various
values of M. The dots on the curves indicate specific
points for which the effective phase shift is 2.57r. For the
dot markers the amplitude varies between 0.031 and 0.95
for M between 10 and 602. [For M = 1 the results are
the same as those with Eq. (8).] Near-unity amplitudes
can be produced, but not for all values of phase. It may
not be practical to increase M further, as this increases
recording time. One way to address this wide variation
in M is to control multiple parameters such as intensity,
diffuser angular velocity, and radial position of the laser
beam on the diffuser. This would allow a modest range
of control (less than 10:1) on each of the three parameters.
It may also be desirable to add a separate phase bias #,
for amplitudes that are close to unity in order to reduce
recording time.

The principal advantage of time-averaged recording is
that the maximum recording depth is substantially less
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than that for nonaveraged recording. This is shown in
Fig. 9 for the density functions corresponding to M = 2,
10, and 29 and effective amplitude @, = 0.025. The effec-
tive values of phase shift are, respectively, 0.9, 2.67, and
4.6m. These curves can be compared with Fig. 7. They
are substantially narrower than the exponential density.
The curves for M = 1 to 10 and M = 10 to 29 both pro-
duce a 27 range; however, the second set of curves (com-
pare M = 2 with M = 29) are even narrower. Also, the
exposure energy used for time-averaged recording will be
smaller by a factor of 2 to 4. This can be seen by invert-
ing the amplitude in Eq. (22) for average exposure energy:

(B o () = Ma, ™ — 1. (23)

For a, = 0.025 and M = 1, which corresponds to the ex-
ponential distribution, the average intensity is propor-
tional to 12.77. For M = 2 the exposure drops to 4.0
For M = 5 the energy is minimum at 2.9, and it in-
creases gradually to 5.07 at M = 29. Therefore both ex-
posure energy and film thickness can be much less if tem-
poral averaging is used.

For monochromatic diffractive optic design, phase
modulations ¢, that differ by integer multiples of 27 are
often treated as equivalent. This 27 phase ambiguity
can be used to produce the same effective value of the
complex modulation @, = (a., ¥,.) for different exposure
conditions. A particular choice of exposure conditions
may be preferable from various considerations of energy
efficiency, accuracy, and recording time. We illustrate
this by expressing the amplitude a, in terms of the phase
¢p in Eq. (22). The term (¢,)/M that is in common be-
tween the expressions for amplitude and phase is substi-
tuted out to give

a, = |cos(¢,/M)|™. (24)

Figure 10 plots both the desired amplitude [Eq. (24)] and
(¥,) (which is proportional to average exposure energy)
against M (which is proportional to the amount of time
averaging). The three curve styles are used to distin-
guish the results for three effective values of phase ¢,
that differ from each other by integer factors of 27 (spe-
cifically, #/2, 5#/2, and 9#/2). The solutions repre-
sented by dots in Fig. 8 (for M = 10, 80, and 180) are re-
plotted in Fig. 10 (again shown as dots). These values
were calculated for ¢, = 57/2 and thus are located on the
solid curves. For each of these solutions, there is an al-
ternative recording condition that produces the same
complex amplitude (indicated in Fig. 10 by diamonds).
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Fig. 9. Probability density functions (pdf’s) for time-averaged
recording in linear resist. Each pdf produces identical effective
amplitude ap = 0.025.
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Fig. 10. Effective amplitude for time-averaged recording in lin-
ear resist for a constant value of effective phase. The dots (@)
indicate identical points from Fig. 8. The diamonds (4 ) indicate
points identical in amplitude but differing in phase by an integer

multiple of 27.

We can see that one recording condition may be preferred
to another. For instance, for the smallest effective am-
plitude (a, = 0.031) the solution on the 97/2 curve uses
more energy than that for the 57/2 curve, but the ampli-
tude is less sensitive to exposure time. For the two
larger-amplitude solutions, the alternative choices on the
7/2 curve use less energy but are much more sensitive to
exposure time. Figure 8 also shows that the sensitivity
of the amplitude with respect to exposure energy gener-
ally decreases with increasing exposure energy.

For large amounts of time averaging, Eq. (22), the ef-
fective amplitude, can be simplified. The gamma density
function in Eq. (21) can be approximated as a Gaussian of

the form
1 %—(%))2]

X — =) | (2la)

P#e) =~ \/'—27r T [2M( ) :

for M a large number, through the use of the central limit
theorem (see Ref. 4, pp. 214-221 and 240). Substituting
this result in Eq. (3) approximates the effective amplitude
of Eq. (22) as

(22a)

(@) ~ exp(i{¥, >)exp( _W’S)z)
s 2M |
This result is quite good for M > 10. This result accu-
rately describes the effective amplitude and phase for M
= 80, 180, and 602. In particular, note that the effective
phase ¢, is independent of M. This can be seen in Fig. 8,
where the effective phase curves (and also the three dots
at (¢,) = 2.57) are all nearly identical.

G. Issue 7: Time-averaged Recording in Log Resist
The analysis of effective amplitude is identical to that
used in deriving Eq. (18), except that the gamma density
is used in place of the exponential density. This gives

<a> = exp(.]‘sbb) f r(M) exP( x)

Yx
1+-M—

X exp|ja In

]dx. (25)

The amplitude again depends on the ratio of speckle in-
tensity to bias intensity. For M = 1 Eq. (25) is identi-
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cally Eq. (18). For any value of M, the amplitude de-
creases monotonically with increasing y. For M a large
number, the gamma density in Eq. (25) can be replaced by
its approximate form [relation (21a)]. After an appropri-
ate change of variables, Eq. (25) is approximated as

(a) ~ %\/J_rb) f_w exp(—x%/2)

X explja In(1 + y + yx/\\M)]dx. (25a)

Factoring out the term 1 + 7y in the log function and us-
ing the approximation In(1 + 2) =~ z for values of 2 < 1,
we can further simplify Eq. (25) to

]

(25b)
The range of validity of the expansion depends on the ex-
tent of the Gaussian in relation (25a). The Gaussian is
essentially zero for x > 8. This leads to M > 9[y/(1
+ 9712, which is always true for M > 9.

Relation (25b) shows that the effective amplitude a,
monotonically decreases with increasing speckle-to-bias
ratio y. For low-sensitivity resist (see Subsection 4.E),
the curves saturate without reaching zero. Increasing
M raises only the saturation value and does not increase
depth of amplitude modulation over recording without
time averaging. The amplitude control provided by time
averaging in log photoresist is similar to that for time-
averaged recording in linear resists, as can be seen by
comparing relations (22a) and (25b). The main differ-
ence between the two results is that relation (22a) always
approaches zero given a large enough exposure, while re-
lation (25b) instead settles to a constant amplitude deter-
mined by a?/M.

2M

ay
1+y

(@) ~ exp[jip + ja In(1 + y)]exp

H. Issue 8: Spatial Resolution of Linear and Log
Resists

Photoresists generally have much higher spatial resolu-
tion than the diffraction limit. However, if speckle is re-
imaged through a projection system, it would be possible
to use an adjustable iris in place of the spinning diffuser.
The blurred speckle pattern can then be considered as
spatially integrated. The problem is analyzed in Chap. 2
of Ref. 1, and it is not surprising that the results are iden-
tical to the analysis of time-integrated speckle given
above. As above, the gamma function is a good approxi-
mation of the pdf of the spatially averaged speckle inten-
sities. The parameter M is now interpreted as the effec-
tive number of speckles averaged together in a
rectangular window. Thus the results presented above
in Subsections 4.F and 4.G can be used without modifica-
tion to analyze the effect of resolution loss in linear and
logarithmic resists.

5. EXPERIMENTAL DEMONSTRATION OF
SPECKLE RECORDING

The theory presented in Section 4 primarily describes the
complex amplitudes that could be produced by recording
laser speckle in photoresist. In order to anticipate better
the potential problems in developing the proposed expo-
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sure system, we have also performed some preliminary
experiments in which we use a phase-only liquid-crystal
light valve to represent photoresist. Unlike the demon-
stration reported in Section 2, in which the SLM repre-
sented an array of pixels, in this section the SLM repre-
sents a single pixel.

One purpose of the demonstration is to show experi-
mentally the control of effective amplitude by varying the
exposure patterns. In one set of measurements, the ex-
posure energies of speckle, (E,), and of bias, E;, are var-
ied. This corresponds to exposure using the apparatus in
Fig. 4(b). In a second set of measurements, the speckle
energy and the speckle diameter are varied. The SLM
has limited spatial resolution, so the SLM introduces spa-
tial averaging. As pointed out in Subsection 4.H, spatial
averaging gives results that are mathematically equiva-
lent to time averaging. Thus this second set of measure-
ments is representative of results made possible by using
the patterning system in Fig. 4(a).

The second purpose of the demonstration is to relate
the experimental measurements to our theory of speckle
recording. However, the optical characteristics of SLM’s
that we have studied are much more complicated than the
properties assumed for resists. The SLM used for this
demonstration is a gallium arsenide photodetector, bire-
fringent liquid-crystal light valve from the Lebedev
Physical Institute, Moscow. It was chosen because it
produces the largest phase shift (up to 4 #) of the SLM’s
available to us. Measurements in a Michelson interfer-
ometer of the read side of the light valve indicate that
there is a roughly logarithmic dependence of the phase
modulation depth on the exposure intensity. However,
the exact phase shifts measured can vary dramatically
based on the spatial-frequency content of the illumination
and the exposure intensity. In particular, the spatial
resolution of the device (4 to 40 line pairs per millimeter)
is known to depend on the exposure intensity. Rather
than attempting to measure and then model the SLM
completely, we have attempted empirically to fit theoret-
ical curves for a logarithmic film of resist to the measured
response of the SLM. This is to say that it has been pos-
sible to adjust parameters (specifically, o, E;, ¥y, and
M) in the theoretical equations so that the trends in the
experiment match the theory. This exercise is certainly
valuable for better appreciating the theory and for antici-
pating the practical limitations of actual photoresists.
We also believe that the process of comparison of the ex-
periment with an approximate theory provides insight
into the optical characteristics of the SLM.

A. Measurement Procedure

The effective amplitude is measured by using the follow-
ing procedure. The write side of the light valve is illumi-
nated by two mutually incoherent (850-nm) laser diode
sources. One beam is expanded and illuminates the light
valve with a spatially uniform bias. The other beam is
focused into a small spot on the surface of a ground-glass
diffuser to produce a speckle pattern illumination on the
light valve. The speckle diameter is varied by translat-
ing a diffuser along the path of the beam so as to change
the beam diameter intercepting the diffuser. The light
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valve is electrically driven with a 2-kHz, 10-V rms sinu-
soidal potential from a signal generator. The read side of
the light valve is illuminated with a 633-nm-wavelength
HeNe laser beam. The beam is spatially filtered and ex-
panded by using a collimator. The collimator lens is po-
sitioned to converge the beam slightly. At the face of the
SLM, the beam is 14.5 mm in diameter. The reflected
beam is observed by using a CCD camera positioned at
the focus of the collimator lens. A digital oscilloscope
connected to the video output of the camera is used to
measure the intensity of the specular diffraction peak for
a range of speckle exposure (0—365 uW/cm?) and differ-
ent settings of bias exposure (0, 9.8, 15.3, and
29.3 uW/cm?) or speckle diameter (0.07, 0.15, 0.25, 0.4, 1,
and 3 mm). The measured intensities are normalized so
that the SLM has nominally unity transmittance for zero
intensity exposure. The measured effective amplitude
a, is taken to be the square root of the normalized inten-
sity. These results are plotted in Fig. 11. The results for
speckle recording at different levels of bias [Fig. 11(a)]
and for various speckle diameters [Fig. 11(b)] are dis-
cussed in sequence.

B. Complex Recording by Combined Speckle and Bias
Exposure

As discussed in Subsection 4.D, for an ideal logarithmic
resist of infinite thickness, Eq. (18) shows that the ratio of
speckle energy to bias energy, y = (E;)/E;, determines
the effective amplitude and that the bias energy can be
used to offset the effective phase by ¢, = a In (£}). This
result becomes complicated for resists for which the ex-
posed depth approaches the film thickness, as modeled by
Eq. (19). For a thin film the total phase modulation
range is ¢,, = ¥ + ¥, Where ¥, is the phase modu-
lation range available in the resist for speckle exposure.
If 4, is too small, then the effective amplitude cannot be
varied from unity to zero. Thus, for a fixed thickness
film, the amplitude range should decrease as the bias is
increased. We will refer to this effect as saturation of the
effective amplitude.

This saturation is observed for the measured curves in
Fig. 11(a). For each curve the amplitude decreases with
increasing speckle level to a point and then begins in-
creasing. As the bias level (listed in Table 2) is in-
creased, the minimum amplitude increases correspond-
ingly. The bias levels have been selected so as to produce
phase shifts ¥, (these values, which were measured in the
Michelson interferometer, are listed in Table 2) covering a
27 range. Thus this SLM, while it can control amplitude
over a 10:1 range, cannot simultaneously produce all val-
ues of phase. Basically, the SLM needs more (than its
current 47) phase modulation range to achieve arbitrary
phase and a 10:1 amplitude control. .

For an ideal logarithmic resist, the effective amplitude
is governed by Eq. (18) for low combined levels of speckle
and bias exposure. Thus plots of effective amplitudes
versus speckle-to-bias ratio y will appear identical for
low-level exposures. For the measured curves in Fig.
11(a), the initial slopes differ if the measured values of
E, are used. In order to compare the measurements for
the SLM with the theory for an ideal resist, values of E,
(listed in the “E; theory” column in Table 2) are used to
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Fig. 11. Experimental demonstration of speckle recording using
a phase-only liquid-crystal light valve to represent a photoresist.
The plots show how the effective amplitude curves change for (a)
different levels of uniform bias E; and (b) different speckle diam-
eters. Specific values used in the experiment and the theory are
given in Tables 2 and 3.

Table 2. Parameters Used for the Measured
and Theoretical Curves in Fig. 11(a)

E, (uW/em?) ¥, (rad)
CurveID  Measured® Theory® Measured®  Theory®
1 29.3 12.3 2.0 0917
2 15.3 15.3 157 1.267
3 9.8 9.8 1.07 1.67n
4 0.0 51 0.07r 2.06m

%Measured speckle diameter is 1 mm.
b Theoretical value of @ is 1.65 rad.

calculate y for the measured curves in Fig. 11(a). With
these choices of E, , the initial slopes of curves 1 and 4 are
brought into coincidence with curves 2 and 3 (which are
plotted by using the measured values of E;). With these
adjustments it is possible to compare the experimental re-
sults with the theory for logarithmic resist.

The theoretical curves in Fig. 11(a) are calculated by
using Eq. (19). The value of logarithmic slope a = 1.65
has been selected so that the initial slopes of theoretical
and measured curves match. Then values of ¢, (the
phase modulation range available for speckle recording,
which is listed in Table 2) are selected to introduce the
saturation effect near the minima of the measured curves.
The minima of theoretical curve 4 cannot be brought
much lower for any value of i, unless the sensitivity ais
also increased, as described in Subsection 4.E. [A fit to
curve 4 using a larger value of a will be described in dis-
cussing Fig. 11(b)]. The theory, while not in close agree-
ment for large values of 7, does show the same upward
trend with increasing saturation.

The values of i, and ¢, in Table 2 also give an idea of
the discrepancy between the ideal resist and the mea-
sured curves. Ifthe SLM were to fit the model of the log
resist closely, then we would expect that the total phase
range of the resist, ¥, = ¥ + ¢, (the sum of the last
two columns of Table 2), would be a constant for each
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level of bias, rather than between 27 and 37. As de-
scribed in Subsections 4.D and 4.E, it is desirable to
choose resists that are thick enough to avoid saturation
and sensitivities large enough to allow an adequately
large range of effective amplitude. The results in Fig.
11(a) illustrate the consequences of not meeting these
conditions. We continue these comparisons for the re-
cording of spatially averaged speckle.

C. Complex Recording by Spatial Averaging of Speckle
The measured results in Fig. 11(b) show how the effective
amplitude changes as a function of y for speckle of vari-
ous diameters. No bias exposure is applied, but for pur-
poses of comparing these results with Fig. 11(a), the same
theoretical value of bias E; = 5.1 uW/cm? is used to plot
the results. Note, in particular, that curves 4 and 9 are
the same measurements. Curves 5-8 show a decreasing
range of amplitude modulation as the speckle diameter
(listed in Table 3) decreases. We presume that this is
due to spatial averaging caused by the limited resolution
of the SLM. Further evidence of this is that a curve for
3-mm-diameter speckle (not shown) is nearly identical to
curve 9 for 1-mm speckle over most of the range of y.
The only apparent discrepancy is near the minimum of
each curve, where the 3-mm case dips only to 0.16 instead
of 0.09. We believe that this difference is due mainly to
the increased level of background noise for the 3-mm case,
which is anticipated as a direct result of its lower direc-
tivity (18:1 for the 3-mm case as opposed to 165:1 for the
1-mm case). The remainder of this subsection compares
these results with those predicted for recording of spa-
tially averaged speckle in logarithmic resist.

The model developed in Subsections 4.G and 4.H for re-
cording spatially averaged speckle in logarithmic resist
assumes that M speckles within a rectangular window
are averaged together. This leads to the relationship
that M is inversely proportional to the square of the
speckle diameter. For the SLM the averaging mecha-
nism is more complicated. We know that resolution is in-
tensity dependent and that the spatial averaging mecha-
nism is likely to differ from that of rectangular averaging.
Nonetheless, for purposes of comparing the measure-
ments with the theory, we will compare M with measured
speckle diameter through the inverse square relationship.

The equation used to calculate the theoretical curves in

Table 3. Parameters Used for the Measured and
Theoretical Curves® in Fig. 11(b)

Speckle Diameter (mm) o
Curve ID Measured Theory (Theory)
5 0.07 0.14 10.0
6 0.15 0.20 4.5
7 0.25 0.25 3.0
8 0.4 0.35 1.5
9 1.0 0.43 1.0

@ Measured bias is E, = 0 uW/cm?; y for the measured curves is calcu-
lated by using the theoretical value of bias Ej = 5.1 #W/cm?, and the the-
oretical curves by using @=2.0 rad and ¢,,; = 2.267.
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Fig. 11(b) is not explicitly presented. It combines the re-
sults for thin logarithmic resists [from Eq. (19)} with the
results for time-averaged resists [Eq. (25)], and it can be
derived directly by using the gamma density function for
p(¥) in Eq. (9). This equation is fitted to the measured
curves by first fitting curve 7 as closely as possible by ad-
justing parameters ¢,,., @, and M and then by adjusting
only M to fit the four other curves. The values used for
curve 7 are i,,, = 2.267 (corresponding to a single value
of film thickness), resist sensitivity & = 2.0, and M = 3.
The values of M for the four other curves are listed in
Table 3. The values of M are related to the theoretical
values of speckle diameter (also listed in Table 3) by se-
lecting the measured and theoretical diameters to be the
same for M = 8 and scaling the other values according to
the inverse square relationship.

With respect to the experimental curves, curves 8 and 9
appear to be overly compressed and curves 5 and 6 appear
to be overly expanded along the y coordinate. It appears
that the effective amplitude of the SLM is saturating
more rapidly for increasing values of y and M than the
theory predicts. The values of measured and theoretical
speckle diameter in Table 3 indicate that the SLM sensi-
tivity decreases more rapidly with speckle diameter than
does the model for the resist.

We also compare theoretical curves 4 and 9 in Figs.
11(a) and 11(b), respectively. Note that curve 9, which
has a higher sensitivity (¢ = 2) than that of curve 4 («
= 1.65), also produces a lower minimum effective ampli-
tude. Ifwe were trying to fit only measured curve 9, then
we would also need to select a somewhat lower value of
bias E,, in order to match more closely the initial slope of
measured curve 9. These results give additional insight
into how the theory depends on the model parameters.

D. Summary of These Results

While the optical properties of the SLM and the idealized
resist are quite different, similar trends are apparent.
As discussed in Subsection 4.E, low values of sensitivity o
limit the minimum achievable value of effective ampli-
tude for a logarithmic resist; and, as discussed in Subsec-
tion 4.D, a finite phase modulation range ¢,,; causes the
effective amplitude to increase for large-intensity speckle
exposures. In fact, the phase modulation range is so
small that any level of bias exposure at all reduces the to-
tal range of effective amplitude modulation. These char-
acteristics seem also to describe qualitatively the behav-
ior of the SLM, which we know has low (also signal-
dependent) sensitivity and phase modulation range. For
practical recording of arbitrary complex values, we clearly
need greater phase range and sensitivity, especially since
applying any bias (which is intended to realize the correct
phase) further reduces the range of the effective ampli-
tude. Likewise, speckle averaging reduces the depth of
modulation, which limits our ability to achieve all com-
plex values. These limitations reflect the shortcomings
of using SLM’s as demonstration vehicles, rather than of
the concept of speckle recording itself. As described in
Subsection 4.D, there are many resists that are ad-
equately sensitive and that can be spun on in adequately
thick layers.
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6. SUMMARY AND CONCLUSIONS

In this paper we have presented the concept of the pat-
terned diffuser array, in which desired complex-valued
samples of a modulation function are realized as arrays of
custom diffusers and where each diffuser pixel has an in-
dividually specified roughness and step height corre-
sponding to the amplitude and the phase desired. The
main application of this device is the realization of
complex-valued spatial filters (e.g., composite pattern rec-
ognition filters, spot array generators, and structured
light illuminators) with phase-only structures. A second
potential application of patterned diffuser arrays is as
gray-level photomasks for projection printing.

We have proposed a photoresist exposure system for
the custom fabrication of diffuser arrays by exposing in-
dividual pixels to appropriate combinations of spatially
uniform and nonuniform illumination. We have focused
on and evaluated the feasibility by using speckle patterns
(that occur naturally when a laser beam is passed
through a diffuser) as the illumination source of the pat-
tern generator. This exposure system appears to place
no critical requirements on optical components, vibration
isolation, or air cleanliness. For this reason we believe
that the components required to construct a turnkey sys-
tem would cost well under $100,000. The most costly
component appears to be the translation stages, which
should be as fast as possible to reduce fabrication time.
If multiple copies of a diffuser array are required, then
greater speeds are possible by using various replication
methods.?

Patterned diffuser arrays provide a direct way to imple-
ment complex-valued modulation without resorting to nu-
merically intensive design procedures. This approach
could be used to shorten significantly the time required to
design and, in many cases, to fabricate, a wide variety of
diffractive optics functions.
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